Những câu hỏi liên quan
PB
Xem chi tiết
CT
14 tháng 6 2019 lúc 6:22

1, ab= (a+b)x (a+b) <=> a*10+b= a*a+ 2*a*b+ b*b <=> a*10 - a*a - 2*a*b+b- b*b =0 <=> a*( 10 -a - 2 *b) + b*( 1- b) =0 <=> a*( 10 -s- 2*b) =0 và b *(1-b)= 0 vì 10> a>0,10> b>=0 nên a*( 10- a- 2*b)=0 thì 10- a- 2*b =0, b*(1-b) =0 thì b=0 hoặc 1-b=0. với b =0 thì thay vào 10- a- 2*0 =0 <=> a = 10 loại. với 1-b= 0 <=> b=1 thì thay vào 10 - a- 2*1 =0 <=> a= 8 nhận. vây số cần tìm 81.

2, abcd= 2025 (abcd= ab *100 + cd = ab*ab+ ab*cd +ab*cd +cd*cd)

Bình luận (0)
PB
Xem chi tiết
CT
16 tháng 2 2018 lúc 17:42

1,

ab= (a+b)x (a+b) <=> a*10+b= a*a+ 2*a*b+ b*b <=> a*10 - a*a - 2*a*b+b- b*b =0 <=> a*( 10 -a - 2 *b) + b*( 1- b) =0 <=> a*( 10 -s- 2*b) =0 và b *(1-b)= 0 vì 10> a>0,10> b>=0 nên a*( 10- a- 2*b)=0 thì 10- a- 2*b =0, b*(1-b) =0 thì b=0 hoặc 1-b=0. với b =0 thì thay vào 10- a- 2*0 =0 <=> a = 10 loại. với 1-b= 0 <=> b=1 thì thay vào 10 - a- 2*1 =0 <=> a= 8 nhận. vây số cần tìm 81.

2, abcd= 2025 (abcd= ab *100 + cd = ab*ab+ ab*cd +ab*cd +cd*cd)

Bình luận (0)
LA
Xem chi tiết
BM
11 tháng 10 2023 lúc 18:58

https://edward29.github.io/surprise/

Bình luận (0)
LT
Xem chi tiết
XL
24 tháng 12 2015 lúc 14:14

trên tia Ox có OA<OB(3<9)nên A sẽ nằm giữa O và B =>OA+AB=OB

thay OA= 3 cm  ;OB= 9 cm ,ta óc :

3+AB=9

AB=9-3=6(cm)

vì M là trung điểm của AB

=>AM=MB=AB/2=6/2=3(cm)

vì N là trung điểm của OB

=>ON=NB=OB/2=9/2=4,5(cm)

=>MB<NB(3<4,5)nên M sẽ nằm giữa N và B =>MN+MB=NB

thay MB=4,5 cm ;NB= 3 cm ,ta có :

3+MN=4,5

MN=4,5-3

MN=1,5(cm)

ai làm ơn tích mình ,mình tích lại cho 

Bình luận (0)
NV
Xem chi tiết
NT
24 tháng 5 2022 lúc 14:31

Câu 2: 

\(\overrightarrow{AC}=\left(-10;x-4\right)\)

\(\overrightarrow{AB}=\left(-1;1\right)\)

Vì C nằm trên AB nên ta có: \(\dfrac{-10}{-1}=\dfrac{x-4}{1}\)

=>x-4=10

hay x=14

Câu 3: 

\(\overrightarrow{AB}=\left(1;2\right)\)

\(\overrightarrow{CD}=\left(-2;-4\right)\)

vì \(\overrightarrow{AB}=\dfrac{-1}{2}\overrightarrow{CD}\)

nên AB//CD

Bình luận (0)
NB
Xem chi tiết
AT
18 tháng 11 2016 lúc 20:45

1) Ta có hình vẽ sau:


A B C D 1 2 1 2

Vì AB // CD nên \(\widehat{A_1}\) = \(\widehat{C_1}\) (so le trong)

AD // BC nên \(\widehat{A_2}\) = \(\widehat{C_2}\) ( so le trong)

Xét ΔABC và ΔCDA có:

\(\widehat{A_1}\) = \(\widehat{C_1}\) (cm trên)

AC: Cạnh chung

\(\widehat{A_2}\) = \(\widehat{C_2}\) (cm trên)

\(\Rightarrow\) ΔABC = ΔCDA (g.c.g) (đpcm)

2) Chứng minh tương tự ta có: ΔCDA = ABC (g.c.g)

\(\Rightarrow\) AB = CD ( 2 cạnh tương ứng) (đpcm)

3) Mình sửa lại chỗ AE = AC là AE = AB đó nha, bn ghi nhầm đề!!!

Ta có hình vẽ sau:

A B C F E 1 2

Xét ΔABC và ΔAFE có:

AE = AB (gt)

\(\widehat{A_1}\) = \(\widehat{A_2}\) (đối đỉnh)

AF = AC (gt)

\(\Rightarrow\) ΔABC = ΔAFE(c.g.c) (đpcm)

Bình luận (0)
NT
18 tháng 11 2016 lúc 20:41

Bạn áp dụng trường hợp bằng nhau cạnh - góc - cạnh của tam giác rồi chứng minh nha

 

Bình luận (0)
NA
Xem chi tiết
PP
Xem chi tiết
TH
Xem chi tiết