Những câu hỏi liên quan
HN
Xem chi tiết
H24
Xem chi tiết
LH
4 tháng 8 2016 lúc 8:29
Câu 1: Áp dụng đ/lí pytago vào tam giác ABC vuông tại A CÓ:AB^2+AB^2=BC^2 Hay: 12^2+5^2=169=BC^2 => BC=13cm ÁP dụng hệ thức ta có: +) AB^2=BH.BC Hay: BH=AB^2:BC=144:13 =144/13(cm) Ta có CH=BC-BH=13-144/13=25/13(cm)
Bình luận (0)
LH
4 tháng 8 2016 lúc 8:31

Bạn chỉ cần áp dụng hệ thức lượng là đc rồi o0o

Bình luận (0)
NB
12 tháng 12 2016 lúc 15:30

Cho tam giác ABC vuông tại A , đường cao AH . Chứng minh rằng 1/AH^2=1/AB^2+1/ac^2

Bình luận (0)
H24
Xem chi tiết
TP
28 tháng 7 2015 lúc 11:32

bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!

Bình luận (0)
CC
13 tháng 2 2016 lúc 11:14

rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ

Bình luận (0)
KT
5 tháng 3 2016 lúc 21:08

viet ba dao nhu the co ma lam dc!!! 

Bình luận (0)
NL
Xem chi tiết
GH
6 tháng 7 2023 lúc 15:27

1

\(\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow AB=\dfrac{3}{.4}AC\)

Theo pytago xét tam giác ABC vuông tại A có:

\(\sqrt{AB^2+AC^2}=BC^2\\ \Rightarrow\sqrt{\left(\dfrac{3}{4}AC\right)^2+AC^2}=10\\ \Rightarrow AC=8\\ \Rightarrow AB=\dfrac{3.8}{4}=6\)

Theo hệ thức lượng xét tam giác ABC vuông tại A, đường cao AH có:

\(AB^2=BH.BC\\ \Leftrightarrow BH=\dfrac{AH^2}{BC}=\dfrac{6^2}{10}=3,6\)

2

\(\dfrac{AB}{AC}=\dfrac{27}{4}\Rightarrow AB=\dfrac{27}{4}AC\)

\(BC=\sqrt{AB^2+AC^2}=\sqrt{\left(\dfrac{27}{4}AC\right)^2+AC^2}=\dfrac{\sqrt{745}AC}{4}\) ( Theo pytago trong tam giác ABC vuông tại A)

Theo hệ thức lượng trong tam giác ABC vuông tại A, đường cao AH có:

\(AH.BC=AB.AC\\ \Leftrightarrow33,6.\dfrac{\sqrt{745}}{4}AC=\dfrac{27}{4}AC.AC\\ \Rightarrow AC=\dfrac{56\sqrt{745}}{45}\)

\(\Rightarrow\left\{{}\begin{matrix}AB=\dfrac{27}{4}.\dfrac{56\sqrt{745}}{45}=\dfrac{42\sqrt{745}}{5}\\BC=\dfrac{\sqrt{745}}{4}.\dfrac{56\sqrt{745}}{45}=\dfrac{2086}{9}\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}AC\approx33,97\\AB\approx229,28\\BC\approx231,78\end{matrix}\right.\)

3

`BC=HB+HC=36+64=100`

Theo hệ thức lượng có (trong tam giác ABC vuông tại A đường cao AH):

\(AH^2=HB.HC\\ \Rightarrow AH=\sqrt{36.64}=48\)

\(AB=\sqrt{HB.BC}=\sqrt{36.100}=60\\ AC=\sqrt{HC.BC}=\sqrt{64.100}=80\)

Bình luận (0)
H24
Xem chi tiết
NT
6 tháng 11 2021 lúc 21:27

AH=2,4cm

Bình luận (0)
H24
6 tháng 11 2021 lúc 21:28

Áp dụng PTG ta có: \(AB^2+AC^2=BC^2\Rightarrow AC=4\left(cm\right)\)

Áp dụng HTL ta có: \(\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{AH^2}\\ \Rightarrow AH=2,4\left(cm\right)\)

Bình luận (4)
HV
Xem chi tiết
KK
23 tháng 3 2022 lúc 20:27

a) Xét ΔABC và ΔHBA có
chung góc B
BAC = AHC (=90°)
=> ΔABC ∽ ΔHBA(gg)

Bình luận (0)
NN
Xem chi tiết
IP
24 tháng 3 2021 lúc 20:04

Áp dụng định lý \(Pi-ta -go \) và tam giác vuông \(ABC\) ta có :

\(AB^2+AC^2=BC^2\Rightarrow BC=\sqrt{AB^2+AC^2}\)

\(=\sqrt{20^2+25^2}=5\sqrt{41}\) \(\left(cm\right)\)

Chu vi \(\Delta ABC\) là :\(AB+AC+BC=20+25+5\sqrt{41}=45+5\sqrt{41}\left(cm\right)\)

Bình luận (0)
NS
Xem chi tiết
NM
4 tháng 5 2022 lúc 13:05

A B C H

Áp dụng hệ thức lượng vào tam giác ABC vuông tại A đường cao AH 

=>\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

<=> \(\dfrac{1}{2^2}=\dfrac{1}{4^2}+\dfrac{1}{AC^2}\)Giải pt ta dc :

=> AC =\(\dfrac{4\sqrt{3}}{3}\)

Áp dụng định lý Pitago vào tam giác ABC vuông tại A 

=> \(BC^2=AB^2+AC^2\)

Thay AB và AC vào rồi tính thì ta sẽ dc:

BC=\(\dfrac{8\sqrt{3}}{3}\)

Vậy BC = \(\dfrac{8\sqrt{3}}{3}\)

Bình luận (0)
MT
Xem chi tiết
AT
2 tháng 7 2021 lúc 16:10

a) \(S_{ABC}=\dfrac{1}{2}.AH.BC=\dfrac{1}{2}.6.10=30\left(cm^2\right)\)

b) Xét \(\Delta ABH\) và \(\Delta CBA:\) Ta có: \(\left\{{}\begin{matrix}\angle ABCchung\\\angle AHB=\angle CAB=90\end{matrix}\right.\)

\(\Rightarrow\Delta ABH\sim\Delta CBA\left(g-g\right)\)

c) \(\Delta ABH\sim\Delta CBA\Rightarrow\dfrac{AB}{BC}=\dfrac{AH}{AC}\Rightarrow AH.BC=AB.AC\)

Bình luận (0)
LK
Xem chi tiết
NT
18 tháng 6 2023 lúc 10:26

a: Xét ΔAEH có

AB vừa là đường cao, vừa là trung tuyến

=>ΔAEH cân tại A

=>AE=AH

b: Xét ΔAHF có

AC vừa là đường cao, vừa là trung tuyến

=>ΔAHF cân tại A

=>AH=AF=AE

Bình luận (0)