Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
NB
Xem chi tiết
CN
Xem chi tiết
LH
28 tháng 8 2016 lúc 15:19

Cần phải CM: \(A=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{198.200}\)

\(\Rightarrow\frac{1}{2}A=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{198.200}\)

\(\Rightarrow\frac{1}{2}A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{198}-\frac{1}{200}\)

\(\Rightarrow\frac{1}{2}A=\frac{1}{2}-\frac{1}{200}\)

\(\Rightarrow A=\frac{99}{200}\)

\(\Rightarrow\frac{1}{2}A=\frac{99}{200}\)

\(\Rightarrow A=\frac{99}{400}\)

Có: \(\frac{1}{4}=\frac{100}{400}\)

Lại có: \(\frac{99}{400}< \frac{100}{400}\)

Vậy A < 1/4 (đpcm)

 

Bình luận (1)
LR
Xem chi tiết
VT
10 tháng 9 2016 lúc 8:51

Dự vào thừa số thứ nhất ở mẫu , ta xác định được thừa số thứ nhất ở mẫu của số hạng thứ 100 là :

\(2+2\left(100-1\right)=200\)

Tức là chứng minh :

\(A=\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{200.202}< \frac{1}{4}\)

Ta có :

\(A=\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{200.202}\)

    \(=\frac{1}{4}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\right)\)

\(=\frac{1}{4}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{100}-\frac{1}{101}\right)\)

\(=\frac{1}{4}\left(1-\frac{1}{101}\right)< \frac{1}{4}.1=\frac{1}{4}\)

Vậy 

 

 

Bình luận (0)
H24
Xem chi tiết
LH
28 tháng 8 2016 lúc 15:22

Dự vào thừa số thứ nhất ở mẫu, ta xác định thừa số thứ nhất ở mẫu của số hạng thứ 100 là :

\(2+2\left(100-1\right)=200\)

Tức là chứng minh :

\(A=\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{200.202}< \frac{1}{4}\)

Ta có :

\(A=\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{200.202}\)

\(=\frac{1}{4}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\right)\)

\(=\frac{1}{4}\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\right)\)

\(=\frac{1}{4}\left(1-\frac{1}{101}\right)< \frac{1}{4}.1=\frac{1}{4}\)

Vậy ...

Bình luận (0)
BL
Xem chi tiết
LA
22 tháng 8 2016 lúc 15:50

Số hạng thứ 50 của dãy là: \(\frac{1}{100.102}\)

Tổng 50 số hạng đầu của dãy là:\(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+.....+\frac{1}{100.102}=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+....+\frac{1}{100}-\frac{1}{102}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{102}\right)=\frac{1}{2}.\frac{25}{51}=\frac{25}{102}\)

Bình luận (0)
H24
22 tháng 8 2016 lúc 16:03

phân số thứ 50 là 1/98.100

1/2.4+1/4.6+1/6.8+.......+1/98.100

=2.(1/2-1/4+1/4-1/6+1/6-1/8+.........+1/98-1/100).1/2

=(1-1/2+1/2-1/3+1/3-1/4+...........+1/49-1/50).1/2

=(1-1/50).1/2

=49/50.1/2

=49/100

Bình luận (0)
KA
Xem chi tiết
TT
22 tháng 9 2021 lúc 11:08

3) a)Số hạng thứ 100 của tổng : \(\left(100-1\right).3+5=302\)

b)Tổng số 100 số hạng đầu tiên : \(302+5.100:2=15350\)

 

Bình luận (0)
KP
Xem chi tiết
DL
17 tháng 5 2019 lúc 20:50

Số hạng thứ 50 theo quy luật là: \(\frac{1}{100.102}\)

Gọi tổng 50 số hạng đầu là S

Ta có: \(S=\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{100.102}\)

\(\Leftrightarrow2S=\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{100.102}\)

\(\Leftrightarrow2S=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{100}-\frac{1}{102}=\frac{1}{2}-\frac{1}{102}=\frac{25}{51}\)

\(\Rightarrow S=\frac{25}{51}:2=\frac{25}{102}.\)

Bình luận (0)
H24
17 tháng 5 2019 lúc 20:52

Bạn Don''t look at me làm đúng rồi ấy

Bình luận (0)
NV
Xem chi tiết
TT
Xem chi tiết
NL
10 tháng 1 2021 lúc 18:08

Ta sử dụng công thức truy hồi để tìm các số hạng tiếp theo trong dãy:

\(1;3;2;-1;-3;-2;1;3;2;-1;-3;-2...\)

Từ đó ta nhận thấy quy luật:

\(u_n=1\) nếu \(n=6k+1\)

\(u_n=3\) nếu \(n=6k+2\)

\(u_n=2\) nếu \(n=6k+3\)

\(u_n=-1\) nếu \(n=6k+4\)

\(u_n=-3\) nếu \(n=6k+5\)

\(u_n=-2\) nếu \(n=6k\)

Đồng thời:

\(u_3=u_2-u_1\)

\(u_4=u_3-u_2\)

...

\(u_{99}=u_{98}-u_{97}\)

\(u_{100}=u_{99}-u_{98}\)

Cộng vế với vế:

\(u_3+u_4+...+u_{100}=u_{99}-u_1\)

\(\Leftrightarrow u_1+u_2+...+u_{100}=u_2+u_{99}=3+u_{6.16+3}=3+2=5\)

Bình luận (0)
BL
Xem chi tiết
PA
10 tháng 7 2017 lúc 12:01

Câu 1: 

a) Số hạng thứ 100 của tổng là: 

(100-1) * 3 + 5 = 302

b) Tổng 100 số hạng đầu tiên là: 

(302 + 5) * 100 : 2 = 15350

                  Đ/S: a) 302

                         b) 15350

Câu 2:

a) Số hạng thừ 50 của tổng là: 

(50 - 1) * 5 + 7 =252

b) Tổng 50 số hạng đầu là:

(252 + 7) * 50 : 2 =6475

                   Đ/S: a) 252

                          b) 6475

Bình luận (0)
HL
10 tháng 9 2017 lúc 9:07

s=5+8+11+14+..

nhận xét :5+3=8

               8+3=11

                11+3=14

...............

vậy => dãy số trên là dãy số cách đều 3 đv

giả sử coi số hạng đứng thứ 100 của dãy là số hạng cuối cùng của dãy và là x.ta có:

(x-5):3+1=100

(x-5):3=100-1

(x-5):3=99

x-5=99x3

x-5=297

x=297+5

x=302

vậy số hạng đứng thứ 100 của dãy là: 302

b) ta có dãy :5+8+11+14+..

(302+5) x100:2=15350

cậu giải tương tự như trên nhá

công thức tính số hạng thứ n là:(số cuối -số đầu):khoảng cách +1

---------------------------------tính tổng:(sc+sđ)x số số hạng :2

Bình luận (0)

có ai nghe tôi nói khong vaayjyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy!

Bình luận (1)