Những câu hỏi liên quan
PB
Xem chi tiết
CT
17 tháng 3 2018 lúc 14:05

Chọn B.

Bình luận (0)
PB
Xem chi tiết
CT
29 tháng 11 2019 lúc 3:22

Bình luận (0)
PB
Xem chi tiết
CT
4 tháng 9 2019 lúc 4:35

Đáp án : D

 

Bình luận (0)
NT
Xem chi tiết
NL
21 tháng 3 2021 lúc 15:53

Bạn coi lại đề, 2 đường thẳng xuất phát từ B nhưng lại song song với nhau, điều này hoàn toàn vô lý

Bình luận (0)
LT
Xem chi tiết
TL
Xem chi tiết
NT
16 tháng 2 2023 lúc 10:16

vecto AH=(x+2;y-4); vecto BC=(-6;-2)

vecto BH=(x-4;y-1); vecto AC=(0;-5)

Theo đề, ta có: -6(x+2)-2(y-4)=0 và 0(x-4)-5(y-1)=0

=>y=1 và -6(x+2)=2(y-4)=2*(1-4)=-6

=>x+2=1 và y=1

=>x=-1 và y=1

Bình luận (0)
TT
Xem chi tiết
PT
15 tháng 5 2016 lúc 21:48

C A B 4 6 -1

Gọi \(\left(x_G;y_G\right)\) là tọa độ của G. Theo công thức tính trọng tâm tam giác, ta có :

\(\begin{cases}x_G=\frac{-1+4+0}{3}=1\\y_G=\frac{0+0+m}{3}=\frac{m}{3}\end{cases}\)

Vậy \(G\left(1;\frac{m}{3}\right)\)

\(\widehat{AGB}=90^0\Leftrightarrow\overrightarrow{BG}\perp AG\Leftrightarrow\overrightarrow{BG}.\overrightarrow{AG}=0\)  (1)

           \(\overrightarrow{BG}=\left(1-4;\frac{m}{3}-0\right)=\left(-3;\frac{m}{3}\right)\)

            \(\overrightarrow{AG}=\left(1+1;\frac{m}{3}-0\right)=\left(2;\frac{m}{3}\right)\)

\(\overrightarrow{BG}.\overrightarrow{AG}=\frac{m^2}{9}-6\)  (2)

Thay (2) vào (1) ta có : \(\widehat{AGB}=90^0\Leftrightarrow m^2=54\Leftrightarrow m=\pm3\sqrt{6}\)

Vậy có 2 giá trị cần tìm của m

 

           

Bình luận (0)
TT
Xem chi tiết
MK
20 tháng 12 2021 lúc 22:04

1, Gọi tọa độ điểm D(x;y)

Ta có:\(\overrightarrow{AB}\left(8;1\right)\)

\(\overrightarrow{DC}\left(1-x;5-y\right)\)

Tứ giác ABCD là hình bình hành khi

\(\overrightarrow{AB}=\overrightarrow{DC}\)

\(\Leftrightarrow1-x=8;5-y=1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-7\\y=4\end{matrix}\right.\)

Vậy tọa độ điểm D(-7;4)

Bình luận (1)
DA
Xem chi tiết
NM
7 tháng 4 2016 lúc 9:11

B A D D C H K M I

Ta có \(HK\perp BC,K\in BC;\overrightarrow{HK}=\left(0;-2\right)\Rightarrow y-1=0\)

Gọi M là trung điểm của BC ta có phương trình \(x+3=0;M=IM\cap BC\Rightarrow M\left(-3;1\right)\)

Gọi D là điểm đối xứng của A qua I chỉ ra BHCD là hình bình hành. Khi đó M là trung điểm của HD, suy ra D(-5;-1).

I là trung điểm của AD, suy ra A(-1;7)

\(AI=\sqrt{20}\), phương trình đường tròn ngoại tiếp tam giác ABC là : \(\left(x+3\right)^2+\left(y-3\right)^2=20\)

Tọa độ điểm B, C là nghiệm của hệ phương trình :

\(\begin{cases}y-1=0\\\left(x+3\right)^2+\left(y-3\right)^2=20\end{cases}\)\(\Leftrightarrow\begin{cases}x=1\\y=1\end{cases}\) hoặc \(\begin{cases}x=-7\\y=1\end{cases}\)

Vậy ta có \(B\left(1;1\right),C\left(-7;1\right)\) hoặc \(B\left(-7;1\right),C\left(1;1\right)\)

Suy ra \(A\left(-1;7\right);B\left(1;1\right),C\left(-7;1\right)\)

   hoặc\(A\left(-1;7\right);B\left(-7;1\right),C\left(1;1\right)\)

Bình luận (0)
PB
Xem chi tiết
CT
14 tháng 12 2017 lúc 11:49

Bình luận (0)