Cho tam giác vuông ABC: cho biết BH= 2cm ; HC= 8cm. Tìm AB; BC; AH; AC. ( Không dùng định lý Pytago)
a) Cho tam giác ABC vuông tại A, đường cao AH = 2cm. Tính các cạnh của tam giác ABC biết: BH = 1cm, HC = 3cm.
b) Cho tam giác ABC đều có AB = 5cm. Tính độ dài đường cao BH?
b: \(BH=\dfrac{5\sqrt{3}}{3}\left(cm\right)\)
a: Đề sai rồi bạn
a.=> BC = BH + CH = 1 + 3 = 4 cm
áp dụng định lý pitago vào tam giác vuông AHB
\(AB^2=HB^2+AH^2\)
\(AB=\sqrt{1^2+2^2}=\sqrt{5}cm\)
áp dụng định lí pitago vào tam giác vuông AHC
\(AC^2=AH^2+HC^2\)
\(AC=\sqrt{2^2+3^2}=\sqrt{13}cm\)
Cho tam giác ABC vuông tại A, đường cao AH=2cm . Tính các cạnh của tam giác ABC biết: BH=1cm, HC=3cm
Bạn tham khảo phần a ở link này: https://olm.vn/hoi-dap/detail/242424867751.html
Áp dụng ĐL pitago cho tam giác AHB vuông tại H
AH2+BH2=AB2
=>22+12=AB2
=>4+1=AB2
=>\(\sqrt{5}\)=AB
Áp dụng ĐL pitago cho tam giác AHC vuông tại H
AH2+HC2=AC2
=>22+32=AC2
=>4+9=AC2
=>\(\sqrt{13}\)=AC
Mặt khác : BH+HC=BC
=>1+3=4=BC
Vậy ...
Cho tam giác ABC vuông tại A , đường cao AH . Biết BH = 2cm , CH = 8cm . Tính các cạnh của tam giác ABC , tỉ số lượng giác của góc B
Áp dụng hệ thức lượng:
\(AH^2=BH.CH\Rightarrow AH=\sqrt{BH.CH}=4\left(cm\right)\)
\(BC=BH+CH=10\left(cm\right)\)
Hệ thức lượng:
\(AB^2=BH.BC\Rightarrow AB=\sqrt{BH.BC}=2\sqrt{5}\left(cm\right)\)
\(AC=\sqrt{CH.BC}=4\sqrt[]{5}\) (cm)
\(sinB=\dfrac{AC}{BC}=\dfrac{2\sqrt{5}}{5}\)
\(cosB=\dfrac{AB}{BC}=\dfrac{\sqrt{5}}{5}\)
\(tanB=\dfrac{AC}{AB}=2\)
Ta có: BH+CH=BC(H nằm giữa B và C)
nên BC=2+8=10(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow AH^2=2\cdot8=16\)
hay AH=4(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=2\cdot10=20\\AC^2=8\cdot10=80\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\sqrt{5}\left(cm\right)\\AC=4\sqrt{5}\left(cm\right)\end{matrix}\right.\)
Xét ΔABC vuông tại A có
\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{4\sqrt{5}}{10}=\dfrac{2\sqrt{5}}{5}\)
\(\cos\widehat{B}=\dfrac{AB}{BC}=\dfrac{2\sqrt{5}}{10}=\dfrac{\sqrt{5}}{5}\)
\(\tan\widehat{B}=\dfrac{AC}{AB}=\dfrac{4\sqrt{5}}{2\sqrt{5}}=2\)
\(\cot\widehat{B}=\dfrac{AB}{AC}=\dfrac{2\sqrt{5}}{4\sqrt{5}}=\dfrac{1}{2}\)
cho tam giác ABC vuông tại A kẻ đường cao AH biết BH=2cm,HC=3cm tính AH
Tam giác ABC vuông tại A có đường cao AH. Áp dụng hệ thức lượng
\(\Rightarrow AH^2=BH.CH=2.3=6\)
\(\Rightarrow AH=\sqrt{6}\left(cm\right)\)
Áp dụng hệ thức lượng vào tam giác vuông \(ABC \) ta có :
\(AH^2=CH.BH=3.2=6\)
\(\Rightarrow AH=\sqrt{AH^2}=\sqrt{6}\) \(\left(cm\right)\)
Tam giác ABC vuông tại A có đường cao AH.áp dụng định lý py -ta -go ta có:
⇒AH2=BH.CH
=2.3=6
⇒AH2=BH.CH
=2.3
=6
⇒AH=√6(cm)
Cho Tam giác ABC vuông tại A biết AB=2cm AC=5cm đường cao AH tính BH HC AH
Áp dụng định lý Pitago:
\(BC=\sqrt{AB^2+AC^2}=\sqrt{29}\left(cm\right)\)
Hệ thức lượng:
\(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{4\sqrt{29}}{29}\)
\(AC^2=CH.BC\Rightarrow CH=\dfrac{AC^2}{BC}=\dfrac{25\sqrt{29}}{29}\)
\(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{10\sqrt{29}}{29}\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=2^2+5^2=29\)
\(\Leftrightarrow BC=\sqrt{29}\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{4}{\sqrt{29}}=\dfrac{4\sqrt{29}}{29}\left(cm\right)\\CH=\dfrac{25}{\sqrt{29}}=\dfrac{25\sqrt{29}}{29}\left(cm\right)\end{matrix}\right.\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH=\dfrac{2\cdot5}{\sqrt{29}}=\dfrac{10\sqrt{29}}{29}\left(cm\right)\)
Cho tam giác ABC vuông tại A dường cao AH Biết AB=5cm BH=2cm tính BC HC AH
\(AH=\sqrt{21}\left(cm\right)\)
cho tam giác ABC vuông tại A đường cao AH . biết BH = 2cm, HC.BC = 15cm . tính AH, AB, AC
Ta có: \(HC\cdot BC=15\)
nên \(HC=\dfrac{15}{BC}\)
Ta có: HB+HC=BC(H nằm giữa B và C)
nên \(BC=2+\dfrac{15}{BC}\)
\(\Leftrightarrow BC^2=2BC+15\)
\(\Leftrightarrow BC^2-2BC-15=0\)
\(\Leftrightarrow\left(BC-5\right)\left(BC+3\right)=0\)
\(\Leftrightarrow BC=5\left(cm\right)\)
\(\Leftrightarrow CH=5-2=3\left(cm\right)\)
\(\Leftrightarrow AH=\sqrt{HB\cdot HC}=\sqrt{6}\left(cm\right)\)
\(\Leftrightarrow AB=\sqrt{BH\cdot BC}=\sqrt{2\cdot5}=\sqrt{10}\left(cm\right)\)
\(\Leftrightarrow AC=\sqrt{CH\cdot BC}=\sqrt{15}\left(cm\right)\)
Cho ΔABC có đường cao AH, biết BH=2cm, CH=8cm, AH=4cm, chứng minh tam giác ABC vuông
Xét tam giác ABC có đường cao AH:
+) Xét tam giác AHB vuông tại H có:
\(AB=\sqrt{AH^2+BH^2}=\sqrt{4^2+2^2}=2\sqrt{5}\left(cm\right)\) (pytago)
+) Xét tam giác AHC vuông tại H có:
\(AC=\sqrt{AH^2+HC^2}=\sqrt{4^2+8^2}=4\sqrt{5}\left(cm\right)\) (pytago)
Từ trên có: \(AB^2+AC^2=\left(2\sqrt{5}\right)^2+\left(4\sqrt{5}\right)^2=100\left(cm\right)\) (1)
Mặt khác: \(BC=BH+HC=2+8=10\left(cm\right)\Rightarrow BC^2=10^2=100\left(cm\right)\) (2)
Từ (1), (2) có: \(AB^2+AC^2=BC^2\)
=> Tam giác ABC vuông tại A (theo đl pytago đảo).
Cho hình thang ABCD (AB//CD) sao cho CA là tia phân giác góc BCD.
a) Chứng minh tam giác ABC cân.
b) Kẻ BH vuông góc AC, biết BH = 2cm; DC = 6cm. Tính AC.
a: góc BCA=góc DCA
=>góc BAC=góc BCA
=>ΔBAC cân tại B
b: Sửa đề: AB=6cm
ΔBAC cân tại B
mà BH là đường cao
nên H là trung điểm của AC
AH=căn AB^2-BH^2=căn 6^2-2^2=4*căn 2(cm)
=>AC=8*căn 2(cm)
Cho tam giác ABC vuông tại A.Kẻ AH vuông góc BC(H thuộc Bc).Tính độ dài AH,Biết BH=2cm,HC=8cm
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow AH^2=2\cdot8=16\)
hay AH=4(cm)
Vậy: AH=4cm