TM
Bài 1:Cho  Delta ABCcân left(ABAC;widehat{A}90^oright). Trên cạnh BC lấy điểm D, trên tia đối của CB lấy điểm E sao cho BD CE. Trên tia đối của CA lấy điểm I sao cho CI CAa. C/m+) Delta ABDDelta ICE+) AB+AC AD+AEb. Từ D và E kẻ các đường thẳng cùng vuông góc với BC cắt AB, AI theo thứ tự tại M, N. C/m BM CNc. Cmr Chu vi Delta ABCnhỏ hơn chu vi Delta AMNBài 2: Cho tam giác ABC có widehat{A} 120^o. Dựng ngoài tam giác ấy các tam giác đều ABD và ACE.a. Gọi M là giao điểm của BE và CD. Tính wideh...
Đọc tiếp

Những câu hỏi liên quan
KT
Xem chi tiết
BQ
Xem chi tiết
TT
4 tháng 5 2019 lúc 18:05

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

Bình luận (0)
TT
4 tháng 5 2019 lúc 18:08

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau

Bình luận (0)
NT
27 tháng 8 2022 lúc 13:11

Câu 4: 

a: Xét ΔABD vuông tại B và ΔAED vuông tại E có

AD chung

góc BAD=góc EAD

Do đó: ΔBAD=ΔEAD
b: Ta có: AB=AE

DB=DE

Do đó: AD là đường trung trực của BE

c: Xét ΔBDF vuông tại B và ΔEDC vuông tại E có

DB=DE

góc BDF=góc EDC

Do đó: ΔBDF=ΔEDC

Suy ra: BF=EC

Bình luận (0)
NT
Xem chi tiết
NC
Xem chi tiết
TK
Xem chi tiết
H24
Xem chi tiết
ZZ
20 tháng 6 2019 lúc 20:55

Rất Sorry bạn nha.Mik mới nghĩ ra câu a,b thôi,còn câu c thì mik cần thời gian:(

Bạn tự chứng minh bổ đề đường trung bình nha.

a.

Do N là trung điểm của DE;I là trung điểm của BE nên NI là đường trung bình của tam giác BDE nên:

\(IN=\frac{1}{2}BD\left(1\right)\)

Mặt khác:M là trung điểm của BC,I là trung điểm của BE nên MI là đường trung bình của tam giác BEC nên:

\(IM=\frac{1}{2}EC\left(2\right)\)

Mà \(BD=EC\) nên từ (1);(2) suy ra \(IN=MI\Rightarrow\Delta IMN\) cân tại I.

b.

Do IN là đường trung bình nên \(IN//AB\Rightarrow\widehat{APQ}=\widehat{INM}\left(3\right)\)

Do IM là đường trung bình nên \(IM//EC\Rightarrow\widehat{AQP}=\widehat{IMN}\left(4\right)\)

Từ (3);(4) suy ra \(\widehat{APQ}=\widehat{AQP}\Rightarrow\Delta APQ\) cân tại A.

Bình luận (0)
H24
Xem chi tiết
AH
23 tháng 8 2021 lúc 18:18

Lời giải:
a. Xét tam giác $ABD$ và $AED$ có:

$AB=AE$ (gt)

$\widehat{BAD}=\widehat{EAD}$ (tính chất tia phân giác)

$AD$ chung

$\Rightarrow \triangle ABD=\triangle AED$ (c.g.c)

b.

Từ tam giác bằng nhau phần a suy ra $BD=ED$ và $\widehat{ABD}=\widehat{AED}$

$\Rightarrow 180^0-\widehat{ABD}=180^0-\widehat{AED}$

$\Rightarrow \widehat{DBM}=\widehat{DEC}$

Xét tam giác $DBM$ và $DEC$ có:

$\widehat{BDM}=\widehat{EDC}$ (đối đỉnh)

$BD=ED$ (cmt)

$\widehat{DBM}=\widehat{DEC}$ (cmt)

$\Rightarrow \triangle DBM=\triangle DEC$ (g.c.g)

Bình luận (1)
AH
23 tháng 8 2021 lúc 18:22

Hình vẽ:

Bình luận (0)
NT
23 tháng 8 2021 lúc 22:50

a: Xét ΔABD và ΔAED có 

AB=AE

\(\widehat{BAD}=\widehat{EAD}\)

AD chung

Do đó: ΔABD=ΔAED

b: Ta có: ΔABD=ΔAED

nên \(\widehat{ABD}=\widehat{AED}\)

mà \(\widehat{MBD}=180^0-\widehat{ABD}\)

và \(\widehat{CED}=180^0-\widehat{AED}\)

nên \(\widehat{MBD}=\widehat{CED}\)

Xét ΔMBD và ΔCED có 

\(\widehat{MBD}=\widehat{CED}\)

DB=DE

\(\widehat{BDM}=\widehat{EDC}\)

Do đó: ΔMBD=ΔCED

Bình luận (0)
DL
Xem chi tiết
IY
21 tháng 6 2018 lúc 11:51

Bài 1:

Gọi M là trung điểm của BC

Vẽ BE là tia phân giác của góc B, E  thuộc AC

nối M với E

ta có: BM =CM  = 1/2.BC ( tính chất trung điểm)

AB=1/2.BC (gt)

=> BM = CM=  AB ( =1/2.BC)

Xét tam giác ABE và tam giác MBE

có: AB = MB (chứng minh trên)

góc ABE = góc MBE (gt)

BE là cạnh chung

\(\Rightarrow\Delta ABE=\Delta MBE\left(c-g-c\right)\)

=> góc BAE = góc BME = 90 độ ( 2 cạnh tương ứng)

=> góc BME = 90 độ

\(\Rightarrow BC\perp AM⋮M\)

Xét tam giác BEM vuông tại M và tam giác CEM vuông tại M

có: BM=CM(gt)

EM là cạnh chung

\(\Rightarrow\Delta BEM=\Delta CEM\left(cgv-cgv\right)\)

=> góc EBM = góc ECM ( 2 cạnh tương ứng)

mà góc EBM = góc ABE = 1/2. góc B (gt)

=> góc EBM = góc ABE = góc ECM

Xét tam giác ABC vuông tại A
có: \(\widehat{B}+\widehat{ECM}=90^0\) ( 2 góc phụ nhau)

=> góc EBM + góc ABE + góc ECM = 90 độ

=> góc ECM + góc ECM + góc ECM = 90 độ

=> 3.góc ECM = 90 độ

góc ECM = 90 độ : 3

góc ECM = 30 độ

=> góc C = 30 độ

Bình luận (0)
H24
Xem chi tiết
LT
29 tháng 4 2019 lúc 11:54

Bài 1: Áp dụng Định lý Pythagoras cho tam giác vuông ABC:AB2+AC2=BC2=>BC2=122+162=400=>BC=20(cm).

 Áp dụng Định lý:"Trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền"cho tam giác ABC:AM=\(\frac{1}{2}\)BC=\(\frac{1}{2}\).20=10cm

Do G là trọng tâm nên:AG=\(\frac{2}{3}\)AM=\(\frac{2}{3}\).10\(\approx\)6.7cm

Bài 2:

E D B C A H

a) Xét \(\Delta\)ABD và \(\Delta\)ACE:

      ADB=AEC=90

      BAC:chung

      AB=AC(\(\Delta\)ABC cân tại A)

=> \(\Delta\)ABD =\(\Delta\)ACE (Cạnh huyền-góc nhọn)

b) \(\Delta\)ABD =\(\Delta\)ACE (chứng minh trên)=>AD=AE=> \(\Delta\)AED cân tại A

c) Dễ thấy: H là trực tâm của tam giác ABC

    Mà  \(\Delta\)ABC cân tại A 

    Nên H cũng đồng thời là tam đường tròn ngoại tiếp tam giác ABC 

    Hay AH là đường trung trực của tam giác ABC

Bình luận (0)
TN
Xem chi tiết
Y
18 tháng 4 2019 lúc 16:28

a) + ΔADB ∼ ΔAEC ( g.g )

\(\Rightarrow\frac{AD}{AB}=\frac{AE}{AC}\Rightarrow\frac{AD}{AE}=\frac{AB}{AC}\)

+ ΔADE ∼ ΔABC ( c.g.c )

b) + AC // MH \(\Rightarrow\frac{AH}{AB}=\frac{MC}{CB}\)

+ AB // MK \(\Rightarrow\frac{CK}{AC}=\frac{MC}{CB}\)

\(\Rightarrow\frac{CK}{AC}-\frac{AH}{AB}=0\)

\(\Rightarrow\left(\frac{CK}{AC}+1\right)-\frac{AH}{AB}=1\)

\(\Rightarrow\frac{AK}{AC}-\frac{AH}{AB}=1\)

Bình luận (0)