H24

Bài 1. Cho tam giác ABC có AB<AC. Tia phân giác của  góc BAC cắt BCD. Trên tia AC lấy E sao cho AE=AB. Gọi M là giao điểm của ABDE. Chứng minh rằng

a) \(\Delta ABD=\Delta AED\)

b) \(\Delta DBM=\Delta DEC\)

AH
23 tháng 8 2021 lúc 18:18

Lời giải:
a. Xét tam giác $ABD$ và $AED$ có:

$AB=AE$ (gt)

$\widehat{BAD}=\widehat{EAD}$ (tính chất tia phân giác)

$AD$ chung

$\Rightarrow \triangle ABD=\triangle AED$ (c.g.c)

b.

Từ tam giác bằng nhau phần a suy ra $BD=ED$ và $\widehat{ABD}=\widehat{AED}$

$\Rightarrow 180^0-\widehat{ABD}=180^0-\widehat{AED}$

$\Rightarrow \widehat{DBM}=\widehat{DEC}$

Xét tam giác $DBM$ và $DEC$ có:

$\widehat{BDM}=\widehat{EDC}$ (đối đỉnh)

$BD=ED$ (cmt)

$\widehat{DBM}=\widehat{DEC}$ (cmt)

$\Rightarrow \triangle DBM=\triangle DEC$ (g.c.g)

Bình luận (1)
AH
23 tháng 8 2021 lúc 18:22

Hình vẽ:

Bình luận (0)
NT
23 tháng 8 2021 lúc 22:50

a: Xét ΔABD và ΔAED có 

AB=AE

\(\widehat{BAD}=\widehat{EAD}\)

AD chung

Do đó: ΔABD=ΔAED

b: Ta có: ΔABD=ΔAED

nên \(\widehat{ABD}=\widehat{AED}\)

mà \(\widehat{MBD}=180^0-\widehat{ABD}\)

và \(\widehat{CED}=180^0-\widehat{AED}\)

nên \(\widehat{MBD}=\widehat{CED}\)

Xét ΔMBD và ΔCED có 

\(\widehat{MBD}=\widehat{CED}\)

DB=DE

\(\widehat{BDM}=\widehat{EDC}\)

Do đó: ΔMBD=ΔCED

Bình luận (0)

Các câu hỏi tương tự
ND
Xem chi tiết
H24
Xem chi tiết
DM
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
KL
Xem chi tiết
BQ
Xem chi tiết
LL
Xem chi tiết