Cho a,b,c là các số nguyên dương. Chứng minh răng tồn tại số nguyên k sao cho ba số nguyên ak+bc, bk+ca, ck+ab có ít nhất một ước nguyên tố chung.
Cho a,b,c là các số nguyên dương. Chứng minh răng tồn tại số nguyên k sao cho ba số nguyên ak+bc, bk+ca, ck+ab có ít nhất một ước nguyên tố chung.
Vẽ đồ thị và khảo sát hàm số sau:
y=\(\dfrac{1}{3}x^2+3x^2-7x-2\)
Cho đường tròn(O;R) (O cố định,R không đổi) M nằm bên ngoài (O) . Tiếp tuyến MB MC (B C là tiếp điểm) .Mx nằm giữa MO và MC . Qua B kẻ đường thẳng song song vơus Mx , đường thẳng này cắt (O) tại điểm thứ hai là A. Vẽ đưoengf kính BB' của(O). Qua O kẻ đường thẳng vuông góc với BB' , đường thẳng này cắt MC và B'C tại K và E. Chứng minh
a, M B O C cùng thuộc 1 đường tròn
b, ME=R
c, Khi M di chuyển mà OM=2R thì K di chuyển trên 1 đường trong cố định, chỉ rõ tâm và bán kính của đường tròn đó
Cho a,b,c Là 3 cạnh tam giác . Chứng minh rằng
\(\dfrac{1}{\sqrt{ab+bc}}+\dfrac{1}{\sqrt{bc+ca}}+\dfrac{1}{\sqrt{ca+ab}}\ge\dfrac{1}{\sqrt{a^2+bc}}+\dfrac{1}{\sqrt{b^2+ac}}+\dfrac{1}{\sqrt{c^2+ab}}\)
1. Cho hệ phương trình \(\left\{{}\begin{matrix}ax-y=2\\x+ay=3\end{matrix}\right.\)
a) tìm a để hệ phương trình có nghiệm duy nhất và tìm nghiệm đó
b) tìm a để hệ phương trình vô nghiệm
2. cho hệ phương trình \(\left\{{}\begin{matrix}ax-2y=a\\-2x+y=a+1\end{matrix}\right.\)
a) tìm a để hệ phương trình có nghiệm duy nhất, khi đó tính x;y theo a
b) tìm a để hệ phương trình có nghiệm duy nhất thỏa mãn: x-y=1
c) tìm a để hệ phương trình có nghiệm duy nhất thỏa mãn x và y là các số nguyên
Cho a,b,c là các số thực thỏa mãn \(a+b+c=\sqrt{a}+\sqrt{b}+\sqrt{c}=2\)
CM \(\dfrac{\sqrt{a}}{1+a}+\dfrac{\sqrt{b}}{1+b}+\dfrac{\sqrt{c}}{1+c}=\dfrac{2}{\sqrt{\left(1+a\right).\left(1+b\right)\left(1+c\right)}}\)
\(\left\{{}\begin{matrix}\dfrac{4x}{1+4x}=\sqrt{y}\\\dfrac{4y}{1+4y}=\sqrt{z}\\\dfrac{4z}{1+4z}=\sqrt{x}\end{matrix}\right.\)
Cho nửa đường tròn tâm O, đường kình AB và M di động trên nửa đường tròn đó. Trên tia AM lấy N sao cho : MN = MB. Dựng hình vuông BMNT. Tìm quỹ tích :
a. Điểm T
b. Điểm N
c. Tâm J của đường tròn
a, giải \(\left\{{}\begin{matrix}x^2+\dfrac{1}{y^2}+\dfrac{x}{y}=3\\x+\dfrac{1}{y}+\dfrac{x}{y}=3\end{matrix}\right.\)
b, tìm x hữa tỷ sao cho \(A=x^2+x+6\) là số chính phương
c, cho\(x\ge1,y\ge1\).
CM: \(\dfrac{x^3+y^3-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}\ge8\)
\(\dfrac{2\sqrt{a}}{a^3+b^2}+\dfrac{2\sqrt{b}}{b^3+c^2}+\dfrac{2\sqrt{c}}{c^3+a^2}\le\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\)