a) Do AM là đường trung tuyến của ∆ABC
⇒ M là trung điểm BC
Do MA = MD (gt)
⇒ M là trung điểm AD
Tứ giác ABDC có:
M là trung điểm BC (cmt)
M là trung điểm AD (cmt)
⇒ ABDC là hình bình hành
Mà ∠BAC = 90⁰ (gt)
⇒ ABDC là hình chữ nhật
b) ∆ABC vuông tại A
⇒ BC² = AB² + AC² (Pytago)
= 6² + 8²
= 100
⇒ BC = 10 (cm)
Do AM là đường trung tuyến ứng với cạnh huyền BC của ∆ABC
⇒ AM = BC : 2
= 10 : 2
= 5 (cm)
c) Nếu ∠B = 45⁰
⇒ C = 90⁰ - ∠B
= 90⁰ - 45⁰
= 45⁰
⇒ ∆ABC vuông cân tại A
⇒ AB = AC
Lại có ABDC là hình chữ nhật
⇒ ABDC là hình vuông
giúp t bài này với cảm ơn mn trc ạ
Câu 1:
a: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
=>ABDC là hình bình hành
Hình bình hành ABDC có \(\widehat{BAC}=90^0\)
nên ABDC là hình chữ nhật
b: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=6^2+8^2=100\)
=>BC=10(cm)
ΔABC vuông tại A
mà AM là đường trung tuyến
nên \(AM=\dfrac{BC}{2}=5\left(cm\right)\)
c: Xét ΔABC vuông tại A có \(\widehat{ABC}=45^0\)
nên ΔABC vuông cân tại A
=>AB=AC
Hình chữ nhật ABDC có AB=AC
nên ABDC là hình vuông
Câu 2:
a: Xét tứ giác MEKH có
G là trung điểm chung của MK và EH
=>MEKH là hình bình hành
Hình bình hành MEKH có \(\widehat{MHK}=90^0\)
nên MEKH là hình chữ nhật
b: Xét ΔMHK có
N,G lần lượt là trung điểm của MH,MK
=>NG là đường trung bình của ΔMHK
=>NG//HK và NG=HK/2
NG//HK
\(D\in HK\)
Do đó: NG//HD
\(NG=\dfrac{HK}{2}\)
\(HD=\dfrac{HK}{2}\)
Do đó: NG=HD
Xét tứ giác NGDH có
NG//DH
NG=DH
Do đó: NGDH là hình bình hành
Hình bình hành NGDH có \(\widehat{NHD}=90^0\)
nên NGDH là hình chữ nhật
Câu 1:
a: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
=>ABDC là hình bình hành
Hình bình hành ABDC có \(\widehat{BAC}=90^0\)
nên ABDC là hình chữ nhật
b: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=6^2+8^2=100\)
=>BC=10(cm)
ΔABC vuông tại A
mà AM là đường trung tuyến
nên \(AM=\dfrac{BC}{2}=5\left(cm\right)\)
c: Xét ΔABC vuông tại A có \(\widehat{ABC}=45^0\)
nên ΔABC vuông cân tại A
=>AB=AC
Hình chữ nhật ABDC có AB=AC
nên ABDC là hình vuông
Câu 2:
a: Xét tứ giác MEKH có
G là trung điểm chung của MK và EH
=>MEKH là hình bình hành
Hình bình hành MEKH có \(\widehat{MHK}=90^0\)
nên MEKH là hình chữ nhật
b: Xét ΔMHK có
N,G lần lượt là trung điểm của MH,MK
=>NG là đường trung bình của ΔMHK
=>NG//HK và NG=HK/2
NG//HK
\(D\in HK\)
Do đó: NG//HD
\(NG=\dfrac{HK}{2}\)
\(HD=\dfrac{HK}{2}\)
Do đó: NG=HD
Xét tứ giác NGDH có
NG//DH
NG=DH
Do đó: NGDH là hình bình hành
Hình bình hành NGDH có \(\widehat{NHD}=90^0\)
nên NGDH là hình chữ nhật
Cho hình chữ nhật ABCD, lấy điểm E trong hình chữ nhật sao cho EA:EB:EC = 1:2:3. Tính giá trị góc AEB
cho tam giác abc vuông tại a. Có đươngf cao AH. gọi p,q là hình chiếu cảu H xuống ab,ac. I là trùng điểm của bh, k là trung điểm của hc, ah cắt pq tại o
a) tứ giác aphq là hình j?
b)cm tam giác kqh là tam giác cân
c)cm kqp=90 độ và pi//qk
a: Xét tứ giác APHQ có
góc APH=góc AQH=góc PAQ=90 độ
=>APHQ là hình chữ nhật
b: ΔCQH vuông tại Q
mà QK là trung tuyến
nên KQ=KH=KC
=>ΔKQH cân tại K
c: góc KQP=góc KQH+góc PQH
=góc KHQ+góc PAH
=góc HAB+góc HBA=90 độ
góc QPI=góc QPH+góc IPH
=góc QAH+góc IHP
=góc HAC+góc HCA=90 độ
=>QP vuông góc PI
mà QP vuông góc QK
nên QK//PI
Bài 5. Cho hình chữ nhật ABCD. Nối C với một điểm E bất kì trên đường chéo BD. Trên tia đối của tia EC lấy điểm F sao cho EF = EC. Vẽ FH và FK lần lượt vuông góc với đường thẳng AB và AD tại H và K. Chứng minh:
a) Tứ giác AHFK là hình chữ nhật
b) AF // BD;
c) Ba điểm E, H, K thẳng hàng.
a: Xét tứ giác AHFK có
góc AHF=góc AKF=góc KAH=90 độ
=>AHFK là hình chữ nhật
b: Gọi O là giao của AC và BD, I là giao của AF và HK
AHFK là hình chữ nhật
=>I là trung điểm chung của AF và HK
ABCD là hình chữ nhật
=>O là trung điểm chung của AC và BD
Xét ΔAFC có I,O lần lượt là trung điểm của AF,AC
=>IO là đường trung bình
=>IO//FC và IO=FC/2
=>IO//FE và IO=FE
Xét tứ giác IFEO có
IO//FE
IO=FE
=>IFEO là hình bình hành
=>IF//OE
=>AF//BD
Bài 6. Cho tam giác ABC vuông tại A. Về phía ngoài tam giác ABC, vẽ hai tam giác vuông cân ADB (DA = DB) và ACE (EA = EC). Gọi M là trung điểm của BC, I là giao điểm của DM và AB, K là giao điểm của EM và AC. Chứng minh:
a) Ba điểm D, A, E thẳng hàng,
b) Tứ giác IAKM là hình chữ nhật
c) Tam giác DME là tam giác vuông cân.
a: góc DAE=góc DAB+góc BAC+góc EAC
=45+90+45=180 độ
=>D,A,E thẳng hàng
b: ΔABC vuông tại A có AM là trung tuyến
nên MA=MB=MC
MA=MB
DA=DB
=>MD là trung trực của AB
=>MD vuông góc AB tại I
MA=MC
EA=EC
=>ME là trung trực của AC
=>ME vuông góc AC tại K
Xét tứ giác AIMK có
góc AIM=góc AKM=góc KAI=90 độ
=>AIMK là hình chữ nhật
Cho tam giác ABC vuông tại A có AH là đường cao , đường trung tuyến AM . qua H kẻ đường thẳng song song với AB và AC ,lần lượt cắt AC ở P và AB ở D . DP cắt AH ở O và AM ở Q
a)chứng minh AH=DP
b) tam giác MAC là tam giác j ? Vì sao ?
C)chứng minh tam giác APQ vuông ở Q
a: Xét tứ giác ADHP có
AD//HP
AP//HD
góc PAD=90 độ
Do đó: ADHP là hình chữ nhật
=>AH=DP
b: ΔABC vuông tại A có AM là đường trung tuyến
nên MA=1/2BC=MC=MB
Xét ΔMAC có MA=MC
nên ΔMAC cân tại M
c: góc QAP+góc QPA
=góc MAC+góc APD
=góc MCA+góc AHD
=góc ACB+góc ABC=90 độ
=>ΔQAP vuông tại Q
Bài 2. Cho tam giác ABC vuông tại A. Một đường thẳng song song với BC cắt hai cạnh AB và
AC lần lượt tại D và E. Gọi M và N lần lượt là trung điểm của DE và BC. Chứng minh rằng:
a) Ba điểm A, M, N thẳng hàng;
b) MN =
2
BC DE
Bài 3. Cho tam giác ABC vuông tại A, đường cao AH. Vẽ HE AB; HF AC. Từ A vẽ một
đường thẳng vuông góc với EF cắt BC tại M. Chứng minh rằng M là trung điểm của BC.
3:
Xét tứ giác AEHF có
góc AEH=góc AFH=góc EAF=90 độ
=>AEHF là hình chữ nhật
AM vuông góc EF
=>góc MAC+góc AFE=90 độ
=>góc MAC+góc AHE=90 độ
=>góc MAC+góc B=90 độ
mà góc MCA+góc B=90 độ
nên góc MAC=góc MCA
=>MA=MC
góc MAC+góc MAB=90 độ
góc MCA+góc MBA=90 độ
mà góc MAC=góc MCA
nên góc MAB=góc MBA
=>MA=MB
=>MB=MC
=>M là trung điểm của BC
Cho tam giác ABC vuông cân tại C trên cạnh AC BC lấy lần lượt lấy các điểm P Q sao cho Ac = CD từ điểm B vẽ BM song song với BC M thuộc AB Chứng minh pcqm là hình chữ nhật(vẽ luôn hình aa)
Để chứng minh PCQM là hình chữ nhật, ta cần chứng minh 4 đỉnh P,, Q, M đều thuộc một đường thẳng và đường thẳng đó vuông góc với cả hai đường PQ và CM.Ta sẽ chứng minh từng bước như sau:Bước 1: Chứng minh P, C, Q thẳng hàngVì tam giác ABC vuông cân tại C và BM song song với BC, nên theo thuộc tính tam giác vuông cân và tam giác đồng dạng:- Ta có AC = BC (tam giác vuông cân)- Ta có BM || BC (theo giả thiết)- Ta có ∠ABC = ∠BAC (tam giác vuông cân)Do đó, tam giác ABC đồng dạng với tam giác BPC (theo góc). Từ đó, ta có:∠BPC = ∠ACB = 90° - ∠ABC = 90° - ∠BAC = ∠BCA (do tam giác vuông cân)Vậy ta có P, C,