Bài 9: Hình chữ nhật

H24
NT
20 tháng 11 2023 lúc 20:45

Câu 1:

a: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

=>ABDC là hình bình hành

Hình bình hành ABDC có \(\widehat{BAC}=90^0\)

nên ABDC là hình chữ nhật

b: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=6^2+8^2=100\)

=>BC=10(cm)

ΔABC vuông tại A

mà AM là đường trung tuyến

nên \(AM=\dfrac{BC}{2}=5\left(cm\right)\)

c: Xét ΔABC vuông tại A có \(\widehat{ABC}=45^0\)

nên ΔABC vuông cân tại A

=>AB=AC

Hình chữ nhật ABDC có AB=AC

nên ABDC là hình vuông

Câu 2:

a: Xét tứ giác MEKH có

G là trung điểm chung của MK và EH

=>MEKH là hình bình hành

Hình bình hành MEKH có \(\widehat{MHK}=90^0\)

nên MEKH là hình chữ nhật

b: Xét ΔMHK có

N,G lần lượt là trung điểm của MH,MK

=>NG là đường trung bình của ΔMHK

=>NG//HK và NG=HK/2

NG//HK

\(D\in HK\)

Do đó: NG//HD

\(NG=\dfrac{HK}{2}\)

\(HD=\dfrac{HK}{2}\)

Do đó: NG=HD

Xét tứ giác NGDH có

NG//DH

NG=DH

Do đó: NGDH là hình bình hành

Hình bình hành NGDH có \(\widehat{NHD}=90^0\)

nên NGDH là hình chữ nhật

Bình luận (0)

Các câu hỏi tương tự
HH
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết
TT
Xem chi tiết
XM
Xem chi tiết
HD
Xem chi tiết
JH
Xem chi tiết