Tam giác ABC vuông tại A;M là trung điểm của BC; Lấy E sao cho M là trung điểm của AE a: Chứng minh ABEC là hcn b: Lấy F sao cho B là trung điểm của AF .Gọi I là trung điểm của BE; Chứng minh rằng : IC=Ì
Tam giác ABC vuông tại A;M là trung điểm của BC; Lấy E sao cho M là trung điểm của AE a: Chứng minh ABEC là hcn b: Lấy F sao cho B là trung điểm của AF .Gọi I là trung điểm của BE; Chứng minh rằng : IC=Ì
Cho tam giác ABC vuông tại A trung tuyến AM. Kẻ MD vuồn góc với AB, ME vuông góc với AC. a) c/m tứ giác ADME là hình chữ nhật. b) Lấy điểm I sao cho D là trung điểm IM. Tứ giác AMBI là hình gì. c) Tìm điều kiện của tam giác ABC để tứ giác AMBI là hình vuông
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)
=>ADME là hình chữ nhật
b; XétΔABC có
M là trung điểm của BC
MD//AC
Do đó: D là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
ME//AB
Do đó: E là trung điểm của AC
ΔABC vuông tại A có AM là trung tuyến
nên AM=BC/2=BM=CM
Xét tứ giác AMBI có
D là trung điểm chung của AB và MI
Do đó: AMBI là hình bình hành
mà MA=MB
nên AMBI là hình thoi
c: Để AMBI là hình vuông thì \(\widehat{AMB}=90^0\)
=>AM\(\perp\)BC
Xét ΔABC có
AM là đường cao, là đường trung tuyến
Do đó: ΔABC cân tại A
=>AB=AC
chi tiết ko cần vẽ hình làm theo chương trinh mới ạ gấp lắm
a: Xét tứ giác AEDF có
\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)
=>AEDF là hình chữ nhật
=>AD cắt EF tại trung điểm của mỗi đường
mà I là trung điểm của EF
nên I là trung điểm của AD
=>A,I,D thẳng hàng
b: Xét ΔBAC có DE//AC
nên \(\dfrac{DE}{AC}=\dfrac{BD}{BC}\)
Xét ΔBAC có DF//AB
nên \(\dfrac{DF}{AB}=\dfrac{CD}{CB}\)
\(\dfrac{DE}{AC}+\dfrac{DF}{AB}=\dfrac{BD}{BC}+\dfrac{CD}{BC}=1\)
=>\(\dfrac{DE}{AB}+\dfrac{DF}{AB}=1\)
=>\(DE+DF=AB\)
=>\(2\cdot\left(DE+DF\right)=2AB\)
=>\(C_{AEDF}=2\cdot AB\) không đổi
cho tam giác ABC cân tại A AH vuông góc với BC tại H .Gọi M là trung điểm AC trên tia đối của tia MH Lấy điểm D sao cho MD=MH
a)C/M tứ giác AHCD là hình chữ nhật
b)C/M AB = HD
c)C/m ABHD là hình bình
a: Xét tứ giác AHCD có
M là trung điểm chung của AC và HD
\(\widehat{AHC}=90^0\)
Do đó: AHCD là hình chữ nhật
b: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
Xét ΔABC có
H,M lần lượt là trung điểm của CB,CA
=>HM làđường trung bình
=>HM//AB và HM=AB/2
mà HM=HD/2
nên AB=HD
c:
AHCD là hình bình hành
=>AD//CH và AD=CH
AD//CH
=>AD//BH
AD=CH
CH=BH
Do đó: AD=BH
Xét tứ giác ABHD có
AD//BH
AD=BH
Do đó: ABHD là hình bình hành
Bài 1:
a: Xét ΔAHD vuông tại H và ΔCKB vuông tại K có
AD=CB
\(\widehat{ADH}=\widehat{CBK}\)
Do đó: ΔAHD=ΔCKB
=>AH=CK
AH\(\perp\)BD
CK\(\perp\)BD
Do đó: AH//CK
Xét tứ giác AHCK có
AH//CK
AH=CK
Do đó: AHCK là hình bình hành
b: AHCK là hình bình hành
=>AK//CH
mà \(M\in AK;N\in HC\)
nên AM//CN
Xét tứ giác AMCN có
AM//CN
AN//CM
Do đó: AMCN là hình bình hành
=>AN=CM
c: AMCN là hình bình hành
=>AM=CN
AK+KM=AM
CH+HN=CN
mà AK=CH(AHCK là hình bình hành)
và AM=CN
nên KM=HN
Xét tứ giác KMHN có
KM//HN
KM=HN
Do đó:KMHN là hình bình hành
=>KH cắt MN tại trung điểm của mỗi đường
mà O là trung điểm của HK
nên O là trung điểm của MN
=>M,O,N thẳng hàng
Bài 3:
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)
=>ADME là hình chữ nhật
=>AM=DE
b: ADME là hình chữ nhật
=>AM cắt DE tại trung điểm của mỗi đường
mà I là trung điểm của DE
nên I là trung điểm của AM
ΔHAM vuông tại H
mà HI là đường trung tuyến
nên IH=IA=IM
IH=IA
=>I nằm trên đường trung trực của AH
Cho tam giác ABC có đường cao AI . Từ A kẻ tia Ax vuông góc với AC , từ
B kẻ tia By song song với AC . Gọi M là giao điểm của tia Ax và tia By . Nối M với
trung điểm P của AB , đường MP cắt AC tại Q và BQ cắt AI tại H .
a) Tứ giác AMBQ là hình gì?
b) Chứng minh tam giác PIQ cân
Mai pk nộp ròi, giúp tui trog tối nay điiii
Cho tam giác ABC có đường cao AH. Gọi I là trung điểm AC, trên tia đối của IH lấy điểm E sao cho IE = IH. Gọi M, N lần lượt là trung điểm của HC, CE. Các đường thẳng AM, AN cắt HE tại G và K.
a) Cm tứ giác AHCE là hình chữ nhật.
b) Cm HG= GK= KE.
giup mikk voiii
a: Xét tứ giác AHCE có
I là trung điểm chung của AC và HE
=>AHCE là hình bình hành
Hình bình hành AHCE có \(\widehat{AHC}=90^0\)
nên AHCE là hình chữ nhật
b: Xét ΔAHC có
HI,AM là đường trung tuyến
HI cắt AM tại G
Do đó: G là trọng tâm của ΔAHC
=>\(HG=\dfrac{2}{3}HI=\dfrac{2}{3}\cdot\dfrac{1}{2}\cdot HE=\dfrac{1}{3}HE\)
Xét ΔEAC có
AN,EI là đường trung tuyến
AN cắt EI tại K
Do đó: K là trọng tâm của ΔEAC
=>\(EK=\dfrac{2}{3}EI=\dfrac{2}{3}\cdot\dfrac{1}{2}\cdot EH=\dfrac{1}{3}EH\)
HG+GK+KE=HE
=>\(GK+\dfrac{1}{3}HE+\dfrac{1}{3}HE=HE\)
=>\(GK=HE\left(1-\dfrac{1}{3}-\dfrac{1}{3}\right)=\dfrac{1}{3}HE\)
=>HG=GK=KE
mn ơi giúp tôi 2 bài này với
Bài 1
a) Do AM là đường trung tuyến của ∆ABC
⇒ M là trung điểm BC
Do MA = MD (gt)
⇒ M là trung điểm AD
Tứ giác ABDC có:
M là trung điểm BC (cmt)
M là trung điểm AD (cmt)
⇒ ABDC là hình bình hành
Mà ∠BAC = 90⁰ (gt)
⇒ ABDC là hình chữ nhật
b) ∆ABC vuông tại A
⇒ BC² = AB² + AC² (Pytago)
= 6² + 8²
= 100
⇒ BC = 10 (cm)
Do AM là đường trung tuyến ứng với cạnh huyền BC của ∆ABC
⇒ AM = BC : 2
= 10 : 2
= 5 (cm)
c) Nếu ∠B = 45⁰
⇒ C = 90⁰ - ∠B
= 90⁰ - 45⁰
= 45⁰
⇒ ∆ABC vuông cân tại A
⇒ AB = AC
Lại có ABDC là hình chữ nhật
⇒ ABDC là hình vuông
Bài 2
a) Do H và E đối xứng với nhau qua G (gt)
⇒ G là trung điểm của HE
Tứ giác MEKH có:
G là trung điểm HE (cmt)
G là trung điểm MK (gt)
⇒ MEKH là hình bình hành
Mà ∠MHK = 90⁰ (MH ⊥ IK)
⇒ MEKH là hình chữ nhật
b) ∆MHK có:
N là trung điểm MH (gt)
G là trung điểm MK (gt)
⇒ NG là đường trung bình của ∆MHK
⇒ NG // HK và NG = HK : 2
Do D là trung điểm HK
⇒ HD = HK : 2
⇒ HD = NG = HK : 2
Do NG // HK
⇒ NG // HD
Do ∠MHK = 90⁰
⇒ ∠NHD = 90⁰
Tứ giác NGDH có:
NG // HD (cmt)
NG = HD (cmt)
⇒ NGDH là hình bình hành
Mà ∠NHD = 90⁰ (cmt)
⇒ NGDH là hình chữ nhật
giúp tôi với mn
a) Do AM là đường trung tuyến của ∆ABC
⇒ M là trung điểm BC
Do MA = MD (gt)
⇒ M là trung điểm AD
Tứ giác ABDC có:
M là trung điểm BC (cmt)
M là trung điểm AD (cmt)
⇒ ABDC là hình bình hành
Mà ∠BAC = 90⁰ (gt)
⇒ ABDC là hình chữ nhật
b) ∆ABC vuông tại A
⇒ BC² = AB² + AC² (Pytago)
= 6² + 8²
= 100
⇒ BC = 10 (cm)
Do AM là đường trung tuyến ứng với cạnh huyền BC của ∆ABC
⇒ AM = BC : 2
= 10 : 2
= 5 (cm)
c) Nếu ∠B = 45⁰
⇒ C = 90⁰ - ∠B
= 90⁰ - 45⁰
= 45⁰
⇒ ∆ABC vuông cân tại A
⇒ AB = AC
Lại có ABDC là hình chữ nhật
⇒ ABDC là hình vuông