Bài 6: Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung

LK

tìm x: 

x3-x2=0

3x2-5x=0

x3=x5

(2x+7)2-4(2x+7)=0

 

EC
6 tháng 8 2021 lúc 19:11

a)x3-x2=0

⇔x2(x-1)=0

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

b)3x2-5x=0

⇔ x(3x-5)=0

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{5}{3}\end{matrix}\right.\)

c)x3=x5

⇔ x3(1-x2)=0

⇔ x3(1-x)(1+x)=0

\(\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)

d)(2x+7)2-4(2x+7)=0

⇔ (2x+7)(2x+3)=0

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-7}{2}\\x=\dfrac{-3}{2}\end{matrix}\right.\)

Bình luận (0)
NT
6 tháng 8 2021 lúc 21:15

a) Ta có: \(x^3-x^2=0\)

\(\Leftrightarrow x^2\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

b) Ta có: \(3x^2-5x=0\)

\(\Leftrightarrow x\left(3x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{5}{3}\end{matrix}\right.\)

c) Ta có: \(x^3=x^5\)

\(\Leftrightarrow x^5-x^3=0\)

\(\Leftrightarrow x^3\left(x^2-1\right)=0\)

\(\Leftrightarrow x^3\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)

d) Ta có: \(\left(2x+7\right)^2-4\left(2x+7\right)=0\)

\(\Leftrightarrow\left(2x+7\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-7}{2}\\x=\dfrac{-3}{2}\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
TT
Xem chi tiết
VP
Xem chi tiết
TT
Xem chi tiết
LH
Xem chi tiết
PM
Xem chi tiết
NA
Xem chi tiết
BD
Xem chi tiết
TK
Xem chi tiết