Bài 6: Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung

PM

Tìm x bik:

a) 2-x=2 (x-2)3

b) 8x3-72x=0

c)(x-1,5)6+2(1,5-x)2=0

d) 2x3+3x2+3+2x=0

e) x2(x+1)-x(x+1)+x(x-1)=0

f) x3-4x-14x(x-2)=0
 

NT
3 tháng 7 2021 lúc 14:19

a) Ta có: \(2-x=2\left(x-2\right)^3\)

\(\Leftrightarrow-\left(x-2\right)-2\left(x-2\right)^3=0\)

\(\Leftrightarrow\left(x-2\right)\left[1+2\left(x-2\right)^2\right]=0\)

\(\Leftrightarrow x-2=0\)

hay x=2

b) Ta có: \(8x^3-72x=0\)

\(\Leftrightarrow8x\left(x^2-9\right)=0\)

\(\Leftrightarrow x\left(x-3\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)

Vậy: S={0;3;-3}

c) Ta có: \(\left(x-1.5\right)^6+2\left(1.5-x\right)^2=0\)

\(\Leftrightarrow\left(x-1.5\right)^2\left[\left(x-1.5\right)^4+2\right]=0\)

\(\Leftrightarrow x-1.5=0\)

hay x=1,5

d) Ta có: \(2x^3+3x^2+3+2x=0\)

\(\Leftrightarrow x^2\left(2x+3\right)+\left(2x+3\right)=0\)

\(\Leftrightarrow2x+3=0\)

\(\Leftrightarrow2x=-3\)

hay \(x=-\dfrac{3}{2}\)

e) Ta có: \(x^2\left(x+1\right)-x\left(x+1\right)+x\left(x-1\right)=0\)

\(\Leftrightarrow x\left(x+1\right)\left(x-1\right)+x\left(x-1\right)=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-2\end{matrix}\right.\)

Vậy: S={0;1;-2}

f) Ta có: \(x^3-4x-14x\left(x-2\right)=0\)

\(\Leftrightarrow x\left(x-2\right)\left(x+2\right)-14x\left(x-2\right)=0\)

\(\Leftrightarrow x\left(x-2\right)\left(x-12\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=12\end{matrix}\right.\)

Vậy: S={0;2;12}

Bình luận (0)