Lời giải:
\(2x(x-4)-6x^2(-x+4)=0\)
\(\Leftrightarrow 2x(x-4)+6x^2(x-4)=0\)
\(\Leftrightarrow (x-4)(2x+6x^2)=0\)
\(\Leftrightarrow (x-4).2x(3x+1)=0\Rightarrow \left[\begin{matrix} x=4\\ x=0\\ x=-\frac{1}{3}\end{matrix}\right.\)
\(2x\left(x-4\right)-6x^2\left(-x+4\right)=0\\ \Leftrightarrow2x\left(x-4\right)+6x^2\left(x-4\right)=0\\ \Leftrightarrow2x\left(1+3x\right)\left(x-4\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=0\\1+3x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=\frac{-1}{3}\\x=4\end{matrix}\right.\)