Bài 6: Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung

TL

1/ \((2x-1)^2-3(2x-1)^2=0\)

2/ \((x-1)^2(x+1)=x+1\)

3/ \(x^4-3x^2=x^2\)

Mọi người giúp em với ạ. Em cảm ơn.

HK
28 tháng 7 2019 lúc 9:34

Bài Làm:

\(1,\left(2x-1\right)^2-3\left(2x-1\right)^2=0\)

\(\Leftrightarrow-2\left(2x-1\right)^2=0\)

\(\Leftrightarrow\left(2x-1\right)^2=0\)

\(\Leftrightarrow2x-1=0\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy ...

\(2,\left(x-1\right)^2\left(x+1\right)=x+1\)

\(\Leftrightarrow\left(x-1\right)^2\left(x+1\right)-\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left[\left(x-1\right)^2-1\right]=0\)

\(\Leftrightarrow\left(x+1\right)\left[x^2-2x+1-1\right]=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-2x\right)=0\)

\(\Leftrightarrow x\left(x+1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\\x-2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=2\end{matrix}\right.\)

Vậy ...

\(3,x^4-3x^2=x^2\)

\(\Leftrightarrow x^4-3x^2-x^2=0\)

\(\Leftrightarrow x^4-4x^2=0\)

\(\Leftrightarrow x^2\left(x^2-4\right)=0\)

\(\Leftrightarrow x^2\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)

Vậy ...

Chúc pạn hok tốt!!!

Bình luận (0)

Các câu hỏi tương tự
TL
Xem chi tiết
MJ
Xem chi tiết
NA
Xem chi tiết
LH
Xem chi tiết
VP
Xem chi tiết
TH
Xem chi tiết
HV
Xem chi tiết
NT
Xem chi tiết
HL
Xem chi tiết