Bài 3: Những hằng đẳng thức đáng nhớ

DN

giup minh bai nay

tim gia tri nhỏ nhất của đa thuc 2x^2-6x

thanks

NH
2 tháng 9 2017 lúc 14:44

Đặt:

\(A=2x^2-6x\)

\(A=2x^2-6x+\dfrac{9}{2}-\dfrac{9}{2}\)

\(A=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}\)

\(A=2\left(x+\dfrac{3}{2}\right)^2-\dfrac{9}{2}\)

\(2\left(x+\dfrac{3}{2}\right)^2\ge0\) nên \(A=2\left(x+\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)

Dấu "=" xảy ra khi:

\(x=-\dfrac{3}{2}\)

Bình luận (1)
TH
2 tháng 9 2017 lúc 14:55

\(2x^2-6x\)

\(=2.\left(x^2-3x\right)\)

=\(2\left[x^2-2.x.\dfrac{3}{2}+\left(\dfrac{3^{ }}{2}\right)^2-\left(\dfrac{3}{2}\right)^2\right]\)

\(=2\left[\left(x-\dfrac{3}{2}\right)^2-\left(\dfrac{3}{2}\right)^2\right]\)

=\(2\left[\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}\right]\ge2\left(0-\dfrac{9}{4}\right)\ge0\)

Vậy GTNN của biểu thức là\(\dfrac{-9}{2}\) xẩy ra khi \(x=\dfrac{3}{2}\)

Nguồn: OLM

Bạn học tốt nhé!

Bình luận (3)
TL
2 tháng 9 2017 lúc 15:34

\(2x^2-6x\\ =2x^2-6x+\dfrac{9}{2}-\dfrac{9}{2}\\ =2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}\\ =2\left[x^2-2\cdot x\cdot\dfrac{3}{2}+\left(\dfrac{3}{2}\right)^2\right]-\dfrac{9}{2}\\ =2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\)

\(\text{Ta có: }\left(x-\dfrac{3}{2}\right)^2\ge0\forall x\\ \Rightarrow2\left(x-\dfrac{3}{2}\right)^2\ge0\forall x\\ \Rightarrow2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\forall x\)

Dấu \("="\) xảy ra khi:

\(2\left(x-\dfrac{3}{2}\right)^2=0\\ \Leftrightarrow \left(x-\dfrac{3}{2}\right)^2=0\\\Leftrightarrow x-\dfrac{3}{2}=0\\ \Leftrightarrow x=\dfrac{3}{2}\)

Vậy \(GTNN\) của biểu thức là \(-\dfrac{9}{2}\) khi \(x=\dfrac{3}{2}\)

Bình luận (1)

Các câu hỏi tương tự
DN
Xem chi tiết
DQ
Xem chi tiết
TT
Xem chi tiết
HV
Xem chi tiết
GT
Xem chi tiết
H24
Xem chi tiết
TQ
Xem chi tiết
SK
Xem chi tiết
LY
Xem chi tiết