Bài 2: Nhân đa thức với đa thức

DD

c/m các bất dẳng thức

a)\(\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\)

b)\(\dfrac{a^2+b^2+c^2}{3}\ge\left(\dfrac{a+b+c}{3}\right)^2\)

KB
10 tháng 9 2018 lúc 17:09

a ) Giả sử : \(\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\)

\(\Leftrightarrow\dfrac{a^2+b^2}{2}\ge\dfrac{\left(a+b\right)^2}{4}\)

\(\Leftrightarrow4\left(a^2+b^2\right)\ge2\left(a+b\right)^2\)

\(\Leftrightarrow4a^2+4b^2\ge2a^2+4ab+2b^2\)

\(\Leftrightarrow2a^2+2b^2\ge4ab\)

\(\Leftrightarrow2a^2+2b^2-4ab\ge0\)

\(\Leftrightarrow2\left(a^2-2ab+b^2\right)\ge0\)

\(\Leftrightarrow2\left(a-b\right)^2\ge0\) ( Điều này luôn đúng )

\(\Rightarrow\) Điều giả sử là đúng

\(\Rightarrow\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\)

\(\left(đpcm\right)\)

b ) Giả sử : \(\dfrac{a^2+b^2+c^2}{3}\ge\left(\dfrac{a+b+c}{3}\right)^2\)

\(\Leftrightarrow\dfrac{a^2+b^2+c^2}{3}\ge\dfrac{\left(a+b+c\right)^2}{9}\)

\(\Leftrightarrow9\left(a^2+b^2+c^2\right)\ge3\left(a+b+c\right)^2\)

\(\Leftrightarrow9\left(a^2+b^2+c^2\right)\ge3\left(a^2+b^2+c^2+2ab+2ac+2bc\right)\)

\(\Leftrightarrow9\left(a^2+b^2+c^2\right)\ge3\left(a^2+b^2+c^2\right)+6\left(ab+ac+bc\right)\)

\(\Leftrightarrow6\left(a^2+b^2+c^2\right)\ge6\left(ab+ac+bc\right)\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+ac+bc\right)\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\)

( Điều này luôn đúng )

\(\Rightarrow\) Điều giả sử là đúng

\(\Rightarrow\dfrac{a^2+b^2+c^2}{3}\ge\left(\dfrac{a+b+c}{3}\right)^2\)

\(\left(đpcm\right)\)

:D

Bình luận (1)
HM
10 tháng 9 2018 lúc 19:45

Mẹ Trang đang chép ak

Bình luận (0)

Các câu hỏi tương tự
DV
Xem chi tiết
DD
Xem chi tiết
NT
Xem chi tiết
DC
Xem chi tiết
DD
Xem chi tiết
TD
Xem chi tiết
DC
Xem chi tiết
DD
Xem chi tiết
DC
Xem chi tiết