\(\left(n-1\right)^2\cdot\left(n+1\right)+\left(n^2-1\right)\)
\(=\left(n-1\right)\left(n+1\right)\left(n-1+1\right)\)
\(=\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮6\)
\(\left(n-1\right)^2\cdot\left(n+1\right)+\left(n^2-1\right)\)
\(=\left(n-1\right)\left(n+1\right)\left(n-1+1\right)\)
\(=\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮6\)
Chứng minh rằng biểu thức : \(A=31^n-15^n-24^n+8^n\) chia hết cho 112 với mọi số tự nhiên n.
Cho f(x) là đa thức với hệ số hữu tỉ . Chứng minh rằng ;
a) Nếu f(\(x^3\)) chia hết cho x-1 thì (\(x^3\)) chia hết cho \(x^2+x+1\)
b)tổng quát : Nếu f(\(x^n\)) chia hết cho x-1 thì f(\(x^n\)) chia hết cho \(x^{n-1}+x^{n-2}+...+x+1\)
chứng minh rằng không tồn tại số tự nhiên n để cho giá trị của biểu thức n^6-n^4-2n^2+9 chia hết cho giá trị của biểu thức n^4+n^2
Chứng minh tổng lập phương cua một số nguyên với 11 lần số đó là một số chia hết cho 6.
Bài 1: Làm tính chia
a) (5x3-14x2+12x+8):(x+2)
b) (2x4- 3x3+4x2+1): (x2-1)
Bài 2: Tìm a để phép chia là phép chia hết
11x2 - 5x - a chia hết cho x + 5
Bài 3: Tìm giá trị nguyên của n để giá trị của biểu thức 2n2 + n – 7 chia hết cho giá trị của biểu thức n – 2
Cho A = n^6+10n^4+n^3+98n-6n^5-26
B=1-n^3-n
a) Chung minh \(n\in Z\) thì thương của phép chia A cho B là bội của 6
b)Tìm \(n\in Z\) để A chia hết cho B
tìm số nguyên tố n để f(x)=x^n-x-2 chia hết cho x+1
1.Chứng minh nếu x mũ 4 trừ 4 nhân x mũ 3 cộng 5 nhân a nhân x mũ 2 trừ 4 nhân b nhân x cộng chia hết x mũ tru 3 cộng 3 nhân x mũ 2 trừ 9 nhân x trừ 3 thì a cộng b cộng c bằng 0