Bài 3: Những hằng đẳng thức đáng nhớ

NM

Chứng minh rằng : \(\frac{1}{2^2}\)+ \(\frac{1}{4^2}\)+ \(\frac{1}{6^2}\)+........+ \(\frac{1}{\left(2n\right)^2}\)<\(\frac{1}{2}\)

H24
7 tháng 4 2019 lúc 21:15

\(A=\frac{1}{4}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)\)

\(< \frac{1}{4}\left(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}\right)\)

\(=\frac{1}{4}\left(2-\frac{1}{n}\right)\)\(=\frac{1}{2}-\frac{1}{4n}< \frac{1}{2}\)

Bình luận (0)
NH
26 tháng 9 2024 lúc 18:47

a; A = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{6^2}\) + ... + \(\dfrac{1}{\left(2n\right)^2}\) 

A = \(\dfrac{1}{2^2}\).(\(\dfrac{1}{1^2}\) + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + ... + \(\dfrac{1}{n^2}\)

A = \(\dfrac{1}{4}\).(\(\dfrac{1}{1}\) + \(\dfrac{1}{2.2}\) + \(\dfrac{1}{3.3}\) + ... + \(\dfrac{1}{n.n}\))

Vì \(\dfrac{1}{2.2}\) < \(\dfrac{1}{1.2}\)\(\dfrac{1}{3.3}\) < \(\dfrac{1}{2.3}\); ...; \(\dfrac{1}{n.n}\) < \(\dfrac{1}{\left(n-1\right)n}\)

nên A < \(\dfrac{1}{4}\).(\(\dfrac{1}{1}\) + \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + ... + \(\dfrac{1}{\left(n-1\right)n}\))

A < \(\dfrac{1}{4.}\)(1 + \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{n-1}\) - \(\dfrac{1}{n}\))

A < \(\dfrac{1}{4}\).(1 + 1 - \(\dfrac{1}{n}\))

A < \(\dfrac{1}{4}\).(2 - \(\dfrac{1}{n}\))

A < \(\dfrac{1}{2}\) - \(\dfrac{1}{4n}\) < \(\dfrac{1}{2}\) (đpcm)

 

Bình luận (0)

Các câu hỏi tương tự
NM
Xem chi tiết
LL
Xem chi tiết
DM
Xem chi tiết
HN
Xem chi tiết
NS
Xem chi tiết
TD
Xem chi tiết
NM
Xem chi tiết
TL
Xem chi tiết
ML
Xem chi tiết