Bài 3: Những hằng đẳng thức đáng nhớ

TL

1) cho các số a,b,c dương thỏa mãn \(a^3+b^3+c^3=3abc\). CMRa=b=c

2) cho x,y,z thỏa mãn xyz=1 và \(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\). Tính A=\(x^{2018}+2019^y-z^x\)

3) Cho \(\frac{ay-bx}{c}=\frac{cx-az}{b}=\frac{bz-cy}{a}.CMR\left(ax+by+cz\right)^2=\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)\)

NT
30 tháng 10 2019 lúc 19:32

1)

Ta có : a^3+b^3+c^3=(a+b+c).(a^2+b^2+c^2-a.b-b.c-a.c)+3.a.b.c=3.a.b.c

=(a+b+c).(a^2+b^2+c^2-a.b-b.c-a.c)=0

Ta thấy:a,b,c là số dương nên a+b+c khác 0 suy ra (a^2+b^2+c^2-a.b-b.c-a.c) =0 nên a=b=c

Vậy a=b=c

Bình luận (0)
 Khách vãng lai đã xóa
AH
31 tháng 10 2019 lúc 19:35

Bài 2:

Từ $xyz=1$ suy ra:

\(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=yz+xz+xy\)

\(\Leftrightarrow xy+yz+xz-x-y-z=0\)

\(\Leftrightarrow (xy-x-y+1)+yz+xz-z-1=0\)

\(\Leftrightarrow (x-1)(y-1)+yz+xz-z-xyz=0\)

\(\Leftrightarrow (x-1)(y-1)+z(y-1)-xz(y-1)=0\)

\(\Leftrightarrow (y-1)(x-1+z-xz)=0\)

\(\Leftrightarrow (y-1)[(x-1)-z(x-1)]=0\Leftrightarrow (y-1)(x-1)(1-z)=0\)

\(\Rightarrow \left[\begin{matrix} x=1\\ y=1\\ z=1\end{matrix}\right.\)

Nếu $x=1\Rightarrow yz=1$

$A=x^{2018}+2019^y-z^x=1+2019^y-z=1+2019^y-\frac{1}{y}$

Nếu $y=1\Rightarrow xz=1$

$A=x^{2018}+2019-z^x=x^{2018}+2019-\frac{1}{x^x}$

Nếu $z=1\Rightarrow xy=1$

$A=\frac{1}{y^{2018}}+2019^y-1$

Tóm lại với đkđb vẫn chưa tính được giá trị cụ thể của $A$

Bình luận (0)
 Khách vãng lai đã xóa
AH
31 tháng 10 2019 lúc 19:39

Bài 1:

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow (a+b)^3-3ab(a+b)+c^3=3abc\)

\(\Leftrightarrow (a+b)^3+c^3-3ab(a+b+c)=0\)

\(\Leftrightarrow (a+b+c)[(a+b)^2-(a+b)c+c^2]-3ab(a+b+c)=0\)

\(\Leftrightarrow (a+b+c)[(a+b)^2-(a+b)c+c^2-3ab]=0\)

\(\Leftrightarrow (a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0\)

Vì $a,b,c$ dương nên $a+b+c\neq 0$

Do đó $a^2+b^2+c^2-ab-bc-ac=0$

$\Leftrightarrow \frac{(a-b)^2+(b-c)^2+(c-a)^2}{2}=0$

$\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0$

Do $(a-b)^2; (b-c)^2; (c-a)^2\geq 0$ với mọi $a,b,c>0$

Suy ra để tổng của chúng bằng $0$ thì $(a-b)^2=(b-c)^2=(c-a)^2=0$

$\Rightarow a=b=c$ (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
AH
31 tháng 10 2019 lúc 21:05

Bài 3:

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{ay-bx}{c}=\frac{cx-az}{b}=\frac{bz-cy}{a}\)

\(\Rightarrow \frac{ayz-bxz}{cz}=\frac{cxy-azy}{by}=\frac{bzx-cyx}{ax}=\frac{ayz-bxz+cxy-azy+bzx-cyx}{cz+by+ax}=0\)

\(\Rightarrow \left\{\begin{matrix} ayz-bxz=0\\ cxy-azy=0\\ bzx-cyx=0\end{matrix}\right.\Rightarrow ayz=bxz=cxy\)

\(\Rightarrow \frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)

Đặt \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}=t\Rightarrow a=xt; b=yt; c=zt\)

Khi đó:

\((ax+by+cz)^2=(x^2t+y^2t+z^2t)^2=t^2(x^2+y^2+z^2)^2\)

\((x^2+y^2+z^2)(a^2+b^2+c^2)=(x^2+y^2+z^2)(x^2t^2+y^2t^2+z^2t^2)=t^2(x^2+y^2+z^2)^2\)

Từ đây ta có đpcm.

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
TD
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
QN
Xem chi tiết
LV
Xem chi tiết
NT
Xem chi tiết
TT
Xem chi tiết
TD
Xem chi tiết
DV
Xem chi tiết