Bài 9: Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp

NG

Cho tam giác ABC, các đường trung tuyến AD, BE, CF .Trong đó AD vuông góc với BE , AD = 9 cm , BE =12 cm.

a. Tính SABC .

b. Tính CF .

NL
24 tháng 5 2019 lúc 17:24

A B D E F C H O

Từ điểm C kẻ 1 đoạn thẳng vuông góc với BE tại H .

Gọi giao điểm của 3 đoạn thẳng AD, BE, CF là O , mà 3 đoạn thẳng AD, BE, CF là đường trung tuyến .

=> Giao điểm O là trọng tâm .

a. Ta có : O là trọng tâm của ΔABC

=> AO / AD = 2/3 ( TC của trọng tâm )

=> AO / 9 = 2 / 3

=> AO = 6

-> SABE = 1/2 . chiều cao . đáy

= 1 / 2 . AO . BE

= 1 / 2 . 6 . 9 = 27 cm2

+, Xét ΔAOE và ΔCHE có :

^AOE = ^CHE ( = 90o )

AE = EC ( đường trung tuyến BE )

^AEO = ^CEH ( đối đỉnh )

=> ΔAOE = ΔCHE ( Ch - gn )

=> AO = HC ( cạnh tương ứng ) = 6cm

-> SBEC = 1 / 2 . chiều cao . đáy

= 1 / 2 . HC . BE

= 1 / 2 . 6 . 12 = 36cm2

Mà SABC =SABE +SBEC =27 +36 = 63cm2

b. Ta có O là trọng tâm của ΔABC

=> BO / BE = 2 / 3 (TC của trọng tâm )

=> BE - BO / BE = 3 - 2 / 3

=> OE / BE = 1 / 3

=> OE / 12 = 1 / 3

=> OE = 4

Mà ΔAOE = ΔCHE ( câu a )

=> OE = EH ( cạnh tương ứng )

=> OE = EH = 4cm

Ta có : OH = OE + EH = 4 + 4 = 8cm

Áp dụng định lý pi-ta-go vào ΔOHC⊥H

OH2 + HC2 = OC2

=> 82 + 62 = OC2

=> OC = 10

Mà O là trọng tâm của ΔABC

=> OC / OF = 2 / 3

=> 10 / OF = 2 / 3

=> OF = 15

Vậy OF = 15 cm .

Bình luận (7)

Các câu hỏi tương tự
NL
Xem chi tiết
NG
Xem chi tiết
NG
Xem chi tiết
NH
Xem chi tiết
LG
Xem chi tiết
H9
Xem chi tiết
IP
Xem chi tiết
LG
Xem chi tiết
MT
Xem chi tiết