#Định_lý_BéZout_toán_nâng_cao_lớp_8
Cho đa thức \(P\left(x\right)\) là đa thức bậc 4 có hệ số cao nhất là 1 thỏa mãn \(P\left(1\right)=3\) \(P\left(3\right)=11\) và \(P\left(5\right)=27\). Tính giá trị của \(P\left(-2\right)+7P\left(6\right)=?\)
#định_lý_Bézout_toán_nâng_cao_lớp_8
Cho đa thức \(P\left(x\right)\) thỏa mãn \(P\left(x\right)=P\left(x+1\right)\) với mọi \(x\) . Chứng minh rằng đa thức \(P\left(x\right)\) là đa thức không chứa biến ( Hay còn gọi là đa thức hằng )
1. a) Biết rằng đa thức P (x) khi chia cho các đa thức x -2, x-3 đc dư lần lượt là -2 và 3, tìm dư trong phép chia đa thức P (x) cho đa thức x2 - 5x + 6
2 Tìm đa thức P(x) bậc 3 biết khi P(x) chia hết cho các đa thức x - 1, x-2 và khi chia cho đa thức x2 - x + 1 thì đc dư là 2x - 3
1) Cho đa thức A= x^4 - 2x^3 + 3x^2 - 5x + 10 và B= x^2 - x + 1. Tìm các đa thức Q và R sao cho A = BQ+R
2) Xác địng số dư khi chia đa thức f(x)= x^25 + x^20 + x^15 + x^30 + x^5 +1 cho
a. x-1
b. x+1
c. x^2-1
3) Tìm x nguyên sao cho giá trị biểu thức x^3 - 2x^2 + 2x chia hết cho x^2 - x +1
4) Xác định số a để
a.x^4 + ax^2 + 1 chia hết cho x^2 - 2x+1
b.2x^2 + ax + 5 chia x + 3 dư 41
Cho đa thức \(P\left(x\right)\) có bậc 8 thỏa mãn \(P\left(1\right)=P\left(-1\right)\) ; \(P\left(2\right)=P\left(-2\right)\);\(P\left(3\right)=P\left(-3\right)\) và \(P\left(4\right)=P\left(-4\right)\). Chứng minh rằng \(P\left(x\right)=P\left(-x\right)\) với mọi \(x\).
Cho đa thức \(P
\left(x\right)\) có bậc là 2020 thỏa mãn \(P\left(k\right)=\dfrac{k}{k+1}\) với \(k\in\left\{0;1;2;3;.....;2020\right\}\). Tính \(P\left(2021\right)=?\)
#định_lý_BéZout
Tìm a để đa thức P(x)= ax^3-3x^2+ax-1
a) Chia hết cho đa thức Q(x)= 2x-1
b) Chia đa thức Q(x) dư 5
Đa thức P(x) khi chia cho x + 1 thì dư 4, khi chia cho x^2 + 1 thì dư 2x+3. Tìm phần dư khi chia P(x) cho (x+1)(x^2+1)
Cho đa thức f(x) khi chia x+1 dư 4, x2+1dư 2x+3. Tìm dư khi chia f(x) cho (x+1).(x2+1)