Ôn tập phép nhân và phép chia đa thức

NL

Cho đa thức f(x) khi chia x+1 dư 4, x2+1dư 2x+3. Tìm dư khi chia f(x) cho (x+1).(x2+1)

OM
21 tháng 4 2020 lúc 22:02

Làm

Ta có: f(x) chia cho x+1 dư 1 => f(-1)=4 (1) (Định lí Bơ-du)

Ta có : f(x)chia x2+1 dư 2x+3 => f(x)= (x2+1)g(x) + 2x+3 (2)

Khi chia f(x) cho đa thức (x+1)(x2+1) bậc 3 thì dư sẽ có dạng ax2+bx+c

=> f(x)= (x+1)(x2+1)k(x)+ax2+bx+c (4)

=> f(x)= (x+1)(x2+1)k(x) +a(x2+1)+bx+c-a

=>f(x) = (x2+1) [(x+1)(x2+1)k(x)+a] +bx+c-3 (3)

(2)(3)=> 2x+3= bx+c-a với mọi x

=> \(\left\{{}\begin{matrix}c-a=3\\b=2\end{matrix}\right.\)

(1)(4)=> a+c=6 mà c-a =3 \(\Rightarrow\left\{{}\begin{matrix}a=\frac{3}{2}\\c=\frac{9}{2}\end{matrix}\right.\)

Vậy đa thức dư là \(\frac{3}{2}x^2+2x+\frac{9}{2}\)

Bình luận (0)

Các câu hỏi tương tự
PN
Xem chi tiết
Xem chi tiết
TN
Xem chi tiết
H24
Xem chi tiết
MJ
Xem chi tiết
NL
Xem chi tiết
KC
Xem chi tiết
TN
Xem chi tiết
KT
Xem chi tiết