Ôn tập phép nhân và phép chia đa thức

MN

Các bạn giúp mình bài này với

Chứng minh: nếu a + b + c = 0 thì a3 + b3 + c3 - 3abc = 0

KS
1 tháng 11 2021 lúc 19:01

a^3 + b^3 + c^3 - 3abc

=(a^3+3a^2b+3ab^2+b^3)+c^3-(3a^2b+3ab^2+3abc)

=(a+b)^3+c^3-3ab(a+b+c)

=(a+b+c)[(a+b)^2-(a+b)c+c^2]-3ab(a+b+c)

=(a+b+c)(a^2+b^2+c^2+2ab-3ab-bc-ac)

=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)

Thay a + b + c = 0, ta có:

0(a^2+b^2+c^2-ab-bc-ac)

=0

Vậy nếu a + b + c = 0 thì a^3 + b^3 + c^3 - 3abc = 0

Bình luận (0)
PN
5 tháng 11 2021 lúc 19:51

Theo bài ra, ta có: a+b+c
Suy ra: 3(a+b+c)-3abc=0
Suy ra: -3abc=0
Tương đương: -3*(b+c)*(a+c)*(a+b)=0
Tương đương: -3* a^2+b^2+c^2=0
Tương đương: -3*0=0
Suy ra: nếu a+b+c=0 thì a3+b3+c3-3abc=0(đpcm)


 

Bình luận (3)

Các câu hỏi tương tự
DN
Xem chi tiết
MS
Xem chi tiết
MS
Xem chi tiết
LM
Xem chi tiết
TT
Xem chi tiết
GV
Xem chi tiết
LM
Xem chi tiết
NA
Xem chi tiết
RD
Xem chi tiết