cho hcn ABCD, kẻ AH vuông góc với BD. Tính SABCD biết BD=4cm và ABD=15
cho hcn ABCD có AB>BC, kẻ AG vuông góc BD. Phân giác góc ABD cắt AD tại I và phân giác góc DAH vắt BD tại K
CM: IK//AH
Cho HCN ABCD có AB=4cm; BC=3cm. Gọi H là chân đường vuông góc kẻ từ A đến xuống BD, phân giác của góc BCD cắt BD ở E
a, CM ΔAHB ∼ ΔBCD
b, CM AH . ED=HB . EB
c, Tính SAEH
a,Xét \(\Delta AHB\) và \(\Delta BCD\) có :
\(\widehat{H}=\widehat{C}=90^0\)
\(\widehat{ABH}=\widehat{BDC}\left(ABCD\cdot là\cdot HCN,slt\right)\)
\(\Rightarrow\Delta AHB\sim\Delta BCD\left(g-g\right)\)
b, Ta có : \(\Delta AHB\sim\Delta BCD\left(cmt\right)\)
\(\Rightarrow\dfrac{AH}{BC}=\dfrac{HB}{DC}\)
\(\Rightarrow\dfrac{AH}{HB}=\dfrac{BC}{DC}\left(1\right)\)
Ta có : EC là phân giác \(\widehat{BCD}\)
\(\Rightarrow\dfrac{EB}{ED}=\dfrac{BC}{CD}\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow\dfrac{AH}{HB}=\dfrac{EB}{ED}\)
\(\Rightarrow AH.ED=HB.EB\left(ĐPCM\right)\)
c, Xét ΔABD vuông tại A, định lý Pi-ta-go ta được :
\(\Rightarrow BD=\sqrt{AD^2+AB^2}=\sqrt{3^2+4^2}=5\left(cm\right)\)
Xét \(\Delta HDA\) và \(\Delta ADB\) có :
\(\widehat{A}=\widehat{AHB}=90^0\)
\(\widehat{D}:chung\)
\(\Rightarrow\Delta HDA\sim\Delta ADB\left(g-g\right)\)
\(\Rightarrow\dfrac{AH}{AB}=\dfrac{AD}{BD}\)
hay \(\dfrac{AH}{4}=\dfrac{3}{5}\)
\(\Rightarrow AH=\dfrac{4.3}{5}=2,4\left(cm\right)\)
Xét ΔAHD vuông tại H, định lí Pi-ta-go ta được :
\(\Rightarrow DH=\sqrt{3^2-2,4^2}=1,8\left(cm\right)\)
Ta có : EC là phân giác \(\widehat{BCD}\)
\(\Rightarrow\dfrac{EB}{ED}=\dfrac{BC}{DC}\)
hay \(\dfrac{EB}{ED}=\dfrac{3}{4}\)
\(\Rightarrow\dfrac{EB}{3}=\dfrac{ED}{4}=\dfrac{EB+ED}{3+4}=\dfrac{5}{7}\)
\(\Rightarrow EB=\dfrac{5}{7}.3=\dfrac{15}{7}\left(cm\right)\)
Ta có : \(EH=BD-DH-EB=5-1,8-\dfrac{15}{7}=\dfrac{37}{35}\) (cm)
\(\Rightarrow S_{AHE}=\dfrac{2,8.\dfrac{37}{35}}{2}=1,48\left(cm^2\right)\)
Cho hcn ABCD có AB=8 cm, BC=6; kẻ AH vuông góc BD(H thuộc BD)
a) tính BD
b) TÍnh S của ABCD
c) chứng minh Tam giác ABD đồng dạng với tam giác HBA
d) C/m DC ^2=BH.BD
e)gọi M là trung điểm AH, N là trung điểm DH. C/m góc DAN= góc ABM
Cho hình chữ nhật ABCD, biết AB=16cm,AD=12 cm.Từ A kẻ AH vuông góc với BD(H thuộc BD) a) tính độ dài BD b) chứng minh:tam giác ABD ~ tam giác HBA
a. Xét tg AHB và tg BCD
AHB^ = C^= 900
ABD^= BDC^ ( so le trong)
=> tam giác AHB đồng dạng với tam giác BCD ( g.g)
mà tam giác ADB đồng dạng với tam giác BCD
=>Tam giác ABD và tam giác HBA đồng dạng
Cho hcn ABCD ; từ C kẻ CP vuông góc BD. Biết CP=24cm và PD/PB=9/16. Tính các cạnh hcn ABCD
Cho hcn abcd. Kẻ ah vuông góc bd(h thuộc bd). Tia phân giác của góc adb cất ah và ab lần lượt tại m và k. Chưng minh ak^2=bk.hm
Cho hcn ABCD, AB= 8, BC=15. Hạ AH vuông góc với BD tại H
a) Tính AH
b) AH cắt BC và DC lần lượt tại I và K. c/m AH2= HI. HK
a: ΔABD vuông tại A
=>BD^2=AB^2+AD^2
=>BD=căn 8^2+15^2=17(cm)
Xét ΔABD vuông tại A có AH là đường cao
nên AH*BD=AB*AD
=>AH*17=15*8=120
=>AH=120/17(cm)
b: Xét ΔHDK vuông tại H và ΔHIB vuông tại H có
góc HDK=góc HIB
Do đó: ΔHDK đồng dạng với ΔHIB
=>HD/HI=HK/HB
=>HD*HB=HK*HI=HA^2
Cho hình chữ nhật ABCD có AB = 4cm, BC = 3cm. Vẽ đường cao AH của tam giác ADB ( H thuộc BD).
a/ Chứng minh ∆ABD đồng dạng với ∆ HBA
b/ Tính độ dài BD, HB.
c/ Kẻ đường phân giác AE của góc BAD ( E thuộc BD). Chứng minh:
a: Xét ΔABD vuông tại A và ΔHBA vuông tại H có
góc ABD chung
=>ΔABD đồng dạng với ΔHBA
b: BD=căn 3^2+4^2=5cm
HB=AB^2/BD=3,2cm
c: AD là phân giác
=>ED/EB=AD/AB
mà AD/AB=AH/BH
nên ED/EB=AH/BH
Cho hình thang vuông ABCD có góc A= góc D= 900 , AB > CD. Kẻ AH vuông góc với BD tại H, AH cắt DC tại điểm E. a) Chứng minh AHD đồng dạng với BAD. b) Chứng minh hệ thức 2 AD AB.DE c) Biết AD = 3cm, AB = 4cm, tính độ dài đoạn DE và diện tích tứ giác ABED. d) Gọi N là hình chiếu của B lên đường thẳng CD, trên tia đối của tia EA lấy điểm M sao cho AE.EN = DE.EM. Chứng minh BE vuông góc với MD.
giúp mình câu a b c với
a: Xét ΔAHD vuông tại H và ΔBAD vuông tại A có
góc D chung
=>ΔAHD đồng dạng với ΔBAD
b; Xét ΔDEA vuông tại D và ΔADB vuông tại A có
góc DEA=góc ADB
=>ΔDEA đồng dạng với ΔADB
=>DE/AD=AD/AB
=>AD^2=DE*AB
c: AD^2=DE*AB
=>DE=3^2/4=2,25cm