Tìm x:
\(\dfrac{x-1}{15}=\dfrac{60}{x-1}\)
15: nếu \(\dfrac{x}{-15}\)=\(\dfrac{-60}{x}\) thì kết quả x bằng:
A) x=30 B) x=30 hoặc x=-1 C) x=3= hoặc x=-30 D) x=\(\dfrac{60}{15}\)
\(x^2=900\Leftrightarrow x^2=30^2\Rightarrow x=30\)
Chọn A
Tìm x:
a) \(\dfrac{x-1}{-15}=\dfrac{-60}{x-1}\)
b) \(\left|x+\dfrac{4}{5}\right|+\dfrac{3}{5}=\dfrac{2}{5}\)
c) \(\left(x-\dfrac{1}{2}\right)^3=\dfrac{1}{27}\)
a) \(\frac{x-1}{-15}=\frac{-60}{x-1}\)
\(\left(x-1\right)^2=\left(-15\right).\left(-60\right)=900\)
\(\Rightarrow\orbr{\begin{cases}\left(x-1\right)^2=300^2\\\left(x-1\right)^2=\left(-300\right)^2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x-1=300\\x-1=-300\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=301\\x=-299\end{cases}}\)
b) \(\left|x+\frac{4}{5}\right|+\frac{3}{5}=\frac{2}{5}\)
\(\left|x+\frac{4}{5}\right|=\frac{2}{5}-\frac{3}{5}\)
\(\left|x+\frac{4}{5}\right|=\frac{-1}{5}\)
vì \(\left|x+\frac{4}{5}\right|\ge0\forall x\)mà \(\left|x+\frac{4}{5}\right|=\frac{-1}{5}\)
\(\Rightarrow\)không có giá trị x nào thỏa mãn đề bài trên
c) \(\left(x-\frac{1}{2}\right)^3=\frac{1}{27}\)
\(\left(x-\frac{1}{2}\right)^3=\left(\frac{1}{3}\right)^3\)
\(\Rightarrow x-\frac{1}{2}=\frac{1}{3}\)
\(\Rightarrow x=\frac{1}{3}+\frac{1}{2}=\frac{5}{6}\)
a) \(\Leftrightarrow\left(x-1\right)\left(x-1\right)=\left(-60\right).\left(-15\right)\)
\(\Leftrightarrow\left(x-1\right)^2=900=30^2\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=30\\x-1=-30\end{cases}\Leftrightarrow\orbr{\begin{cases}x=30+1\\x=-30+1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=31\\x=-29\end{cases}}}\)
Vậy x = 31 hoặc x = - 29
b) \(\left|x+\frac{4}{5}\right|+\frac{3}{5}=\frac{2}{5}\)
\(\Leftrightarrow\left|x+\frac{4}{5}\right|=\frac{2}{5}-\frac{3}{5}\)
\(\Leftrightarrow\left|x+\frac{4}{5}\right|=\frac{-1}{5}\)vô lý không có giá trị tuyệt đối của số nào mà nhận giá trị âm
Vậy ko có giá trị nào của x thỏa mãn
c) \(\left(x-\frac{1}{2}\right)^3=\frac{1}{27}\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^3=\left(\frac{1}{3}\right)^3\)
\(\Leftrightarrow x-\frac{1}{2}=\frac{1}{3}\)
\(\Leftrightarrow x=\frac{1}{3}+\frac{1}{2}\)
\(\Leftrightarrow x=\frac{5}{6}\)
\(\dfrac{x}{-15}\) = \(\dfrac{-60}{x}\)
\(|x|+0,573=2\)
\(|x+\dfrac{1}{3}|-4=-1\)
0,01 : 2,5 =(0,75x) : 0,75
a) Ta có: \(\dfrac{x}{-15}=\dfrac{-60}{x}\)
\(\Leftrightarrow x^2=\left(-15\right)\cdot\left(-60\right)=900\)
hay \(x\in\left\{30;-30\right\}\)
Vậy: \(x\in\left\{30;-30\right\}\)
b) Ta có: \(\left|x\right|+0.573=2\)
\(\Leftrightarrow\left|x\right|=1.427\)
hay \(x\in\left\{1.427;-1.427\right\}\)
Vậy: \(x\in\left\{1.427;-1.427\right\}\)
c) Ta có: \(\left|x+\dfrac{1}{3}\right|-4=-1\)
\(\Leftrightarrow\left|x+\dfrac{1}{3}\right|=3\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{3}=3\\x+\dfrac{1}{3}=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{8}{3}\\x=-\dfrac{10}{3}\end{matrix}\right.\)
Vậy: \(x\in\left\{\dfrac{8}{3};-\dfrac{10}{3}\right\}\)
d) Ta có: \(0.01:2.5=\left(0.75x\right):0.75\)
\(\Leftrightarrow\dfrac{0.75\cdot x}{0.75}=\dfrac{0.01}{2.5}\)
\(\Leftrightarrow x=\dfrac{1}{250}\)
Vậy: \(x=\dfrac{1}{250}\)
tìm x biết :
1+\(\dfrac{-1}{60}\)+\(\dfrac{19}{120}\)<\(\dfrac{x}{36}\)<\(\dfrac{58}{90}\)+\(\dfrac{59}{72}\)+\(\dfrac{-1}{60}\)
Tìm x biết: a) x . \(\dfrac{-3}{4}\) = \(\dfrac{2}{5}\) + \(\dfrac{3}{4}\) b) 1 - 1\(\dfrac{1}{5}\)x = 60%
c) \(\dfrac{1}{2}\)x + \(\dfrac{3}{2}\)x + x = 16
Tìm x trong tỉ lệ thức
a) \(-0,52:x=-9,36:16,38\)
b) \(2\dfrac{2}{5}:x=1\dfrac{7}{9}:0,2\)
c)\(\left(\dfrac{2}{5}x\right):\dfrac{1}{3}=1\dfrac{1}{3}:\dfrac{4}{5}\)
d) \(0,3:1\dfrac{1}{3}=\dfrac{2}{5}:\left(3x+6\right)\)
e) \(\dfrac{x}{-15}=\dfrac{-60}{x}\)
f) \(\dfrac{x-1}{-15}=\dfrac{-60}{x-1}\)
g) \(\dfrac{x-1}{7}=\dfrac{9}{x+1}\)
h) \(\dfrac{x-2}{x-1}=\dfrac{x+4}{x+7}\)
Tìm x trong tỉ lệ thức
a) −0,52 : x = −9,36 : 16,38
\(\dfrac{-0.52}{x}=\dfrac{-9.36}{16.38}=-\dfrac{4}{7}\\ \Rightarrow x=\dfrac{7.\left(-0.52\right)}{-4}=\dfrac{91}{100}=0.91\)
B1 : Tìm x,y
a) \(\dfrac{x}{-15}=\dfrac{60}{x}\)
b)\(\dfrac{-2}{x}=\dfrac{-x}{\dfrac{8}{25}}\)
c)\(\dfrac{37-x}{x+13}=\dfrac{3}{7}\)
d) \(\dfrac{x}{2}=\dfrac{y}{5}=xy=10\)
Giúp tui đi :< Tui tick
d: Đặt x/2=y/5=k
=>x=2k; y=5k
Ta có: xy=10
nên k2=1
Trường hợp 1: k=1
=>x=2; y=5
Trường hợp 2: k=-1
=>x=-2; y=-5
1) cho B= \(\dfrac{1-5\sqrt{x}}{x-1}\)
Tìm x thuộc R để B nguyên
2) Tính
+ \(\sqrt{8-2\sqrt{15}}.\left(\sqrt{60}+6\right):2\sqrt{3}\)
+ \(\sqrt{5-\sqrt{21}}-\sqrt{\dfrac{7}{2}}\)
Bài 2:
a: Ta có: \(\sqrt{8-2\sqrt{15}}\cdot\left(\sqrt{60}+6\right):2\sqrt{3}\)
\(=\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{12}\left(\sqrt{5}+\sqrt{3}\right):2\sqrt{3}\)
\(=2\sqrt{12}:2\sqrt{3}\)
=2
b: Ta có: \(\sqrt{5-\sqrt{21}}-\sqrt{\dfrac{7}{2}}\)
\(=\dfrac{\sqrt{10-2\sqrt{21}}-\sqrt{7}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{7}-\sqrt{3}-\sqrt{7}}{\sqrt{2}}\)
\(=-\dfrac{\sqrt{6}}{2}\)
Tính bằng cách thuận tiện nhất:
a) 60 x (\(\dfrac{7}{12}\) + \(\dfrac{4}{15}\))
b) \(\dfrac{1}{2}\) x \(\dfrac{2}{3}\) x \(\dfrac{3}{4}\) x \(\dfrac{4}{5}\) x \(\dfrac{5}{6}\) x \(\dfrac{6}{7}\) x \(\dfrac{7}{8}\) x \(\dfrac{8}{9}\)
60x [7/12+4/15]
60x153/180
=9180/180
b 1/2x2/3x3/4x4/5x5/6x6/7x7/8x8/9=40320/4032
Tìm số nguyên x :\(\dfrac{x-1}{15}=\dfrac{-60}{1-x}\)
\(\frac{x-1}{15}=\frac{-60}{1-x}\)
\(\Rightarrow\frac{x-1}{15}=\frac{60}{-\left(1-x\right)}\)
\(\Rightarrow\frac{x-1}{15}=\frac{60}{x-1}\)
\(\Rightarrow\left(x-1\right)^2=900\)
\(\Rightarrow\left[\begin{matrix}x-1=30\\x-1=-30\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=31\\x=-29\end{matrix}\right.\)
Vậy \(x\in\left\{31;-29\right\}\)
\(\frac{x-1}{15}=\frac{-60}{1-x}\)
\(\Rightarrow\frac{x-1}{15}=\frac{-60}{-x+1}\)
\(\Rightarrow\frac{x-1}{15}=\frac{-60}{-\left(x-1\right)}\)
\(\Rightarrow\frac{x-1}{15}=\frac{60}{x-1}\)
\(\Rightarrow\left(x-1\right)^2=15.60\)
\(\Rightarrow\left(x-1\right)^2=900\)
\(\Rightarrow x-1=\pm30\)
\(\Rightarrow\left\{\begin{matrix}x-1=30\\x-1=-30\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}x=31\\x=-29\end{matrix}\right.\)
Vậy...