Những câu hỏi liên quan
HT
Xem chi tiết
LH
21 tháng 8 2019 lúc 23:10

\(x=\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5-2\sqrt{13}}\)

<=>\(x^3=5+2\sqrt{13}+3.\sqrt[3]{5+2\sqrt{13}}.\sqrt[3]{5-2\sqrt{13}}\left(\sqrt[3]{5-2\sqrt{13}}+\sqrt[3]{5+2\sqrt{13}}\right)+5-2\sqrt{13}\)

<=> \(x^3=10+3\sqrt[3]{5^2-\left(2\sqrt{13}\right)^2}.x\)

<=> \(x^3=10+3\sqrt[3]{-27}.x=10-9x\)

<=> x3+9x-10=0

<=> x3-x2+x2-x+10x-10=0

<=>\(x^2\left(x-1\right)+x\left(x-1\right)+10\left(x-1\right)=0\)

<=> \(\left(x^2+x+10\right)\left(x-1\right)=0\)

<=> \(\left(x^2+2.\frac{1}{2}x+\frac{1}{4}+\frac{39}{4}\right)\left(x-1\right)=0\)

<=> \(\left[\left(x+\frac{1}{2}\right)^2+\frac{39}{4}\right]\left(x-1\right)=0\)

=> x-1=0 (vì \(\left(x+\frac{1}{2}\right)^2+\frac{39}{4}>0\))

<=> x=1

Bình luận (0)
PV
Xem chi tiết
NC
28 tháng 4 2020 lúc 9:33

Nhận xét x > 0 

=> \(x^3=10+3x\left(\sqrt[3]{5^2-4.13}\right)\)

<=> \(x^3=10-9x\)

<=> \(x^3+9x-10=0\)

<=> \(\left(x-1\right)\left(x^2+x+10\right)=0\)

<=> \(x-1=0\) vì x > 0 

<=> x = 1 thử lại thỏa mãn

Vậy x = 1 

Bình luận (0)
 Khách vãng lai đã xóa
NP
Xem chi tiết
VS
Xem chi tiết
CD
Xem chi tiết
TA
12 tháng 7 2017 lúc 18:22

Ta có  

\(\left(\sqrt{27+10\sqrt{2}}-\sqrt{27-10\sqrt{2}}\right)^2\)

\(=27+10\sqrt{2}+27-10\sqrt{2}-2\sqrt{\left(27+10\sqrt{2}\right)\left(27-10\sqrt{2}\right)}\)

\(=54-2\sqrt{529}=8\)

\(\Rightarrow\)  \(\sqrt{27+10\sqrt{2}}-\sqrt{27-10\sqrt{2}}=\sqrt{8}=2\sqrt{2}\)

Xét tử số

\(\left(27+10\sqrt{2}\right)\sqrt{27-10\sqrt{2}}-\left(27-10\sqrt{2}\right)\sqrt{27+10\sqrt{2}}\)

\(=\left(\sqrt{27+10\sqrt{2}}.\sqrt{27-10\sqrt{2}}\right)\left(\sqrt{27+10\sqrt{2}}-\sqrt{27-10\sqrt{2}}\right)\)

\(=23\left(\sqrt{27+10\sqrt{2}}-\sqrt{27-10\sqrt{2}}\right)\)

\(=23.2\sqrt{2}=46\sqrt{2}\)

Lại có  \(\left(\sqrt{\sqrt{13}-3}+\sqrt{\sqrt{13}+3}\right)^2\)

\(=\sqrt{13}-3+\sqrt{13}+3+2\sqrt{\left(\sqrt{13}-3\right)\left(\sqrt{13}+3\right)}\)

\(=2\sqrt{13}+2\sqrt{4}=2\sqrt{13}+4\)

ta bình phương mẫu số

\(\left(\frac{\sqrt{\sqrt{13}-3}+\sqrt{\sqrt{13}+3}}{\sqrt{\sqrt{13}+2}}\right)^2=\frac{\left(\sqrt{\sqrt{13}-3}+\sqrt{\sqrt{13}+3}\right)^2}{\sqrt{13}+2}\)

\(=\frac{2\sqrt{13}+4}{\sqrt{13}+2}=2\)

Vậy mẫu  \(=\sqrt{2}\)

Vậy  \(x=\frac{46\sqrt{2}}{\sqrt{2}}=46\)  thay vào ta đc A = 92880

Bình luận (0)
PP
Xem chi tiết
NT
4 tháng 9 2023 lúc 14:46

\(=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}-\dfrac{3\sqrt{x}-2}{\left(\sqrt{x}-1\right)}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)

\(=\dfrac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\dfrac{-\left(5x-7\sqrt{x}+2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-\left(5\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)

Bình luận (0)
H9
4 tháng 9 2023 lúc 16:28

\(A=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\) (ĐK: \(x\ne1;x\ge0\))

\(A=\dfrac{15\sqrt{x}-11}{x+3\sqrt{x}-\sqrt{x}-3}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)

\(A=\dfrac{15\sqrt{x}-11}{\sqrt{x}\left(\sqrt{x}+3\right)-\left(\sqrt{x}+3\right)}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)

\(A=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(A=\dfrac{\left(15\sqrt{x}-11\right)-\left(3x+9\sqrt{x}-2\sqrt{x}-6\right)-\left(2x-2\sqrt{x}+3\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(A=\dfrac{15\sqrt{x}-11-3x-7\sqrt{x}+6-2x-\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(A=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(A=\dfrac{-\left(5x-7\sqrt{x}+2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(A=\dfrac{-\left(5\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(A=\dfrac{-\left(5\sqrt{x}-2\right)}{\sqrt{x}+3}\)

\(A=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)

Bình luận (1)
JW
4 tháng 9 2023 lúc 15:11

A = \(\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\) 

Bình luận (0)
H24
Xem chi tiết
AH
30 tháng 5 2021 lúc 18:44

Lời giải:
\(x=\frac{\sqrt{13-4\sqrt{3}}}{2}=\frac{\sqrt{13-2\sqrt{12}}}{2}=\frac{\sqrt{12+1-2\sqrt{12}}}{2}=\frac{\sqrt{(\sqrt{12}-1)^2}}{2}=\frac{\sqrt{12}-1}{2}\)

\(2A=1+\frac{7}{2\sqrt{x}-3}=1+\frac{7}{\sqrt{2\sqrt{12}-2}}\)

\(A=\frac{1}{2}+\frac{7}{2\sqrt{4\sqrt{3}-2}}\)

Bình luận (0)
H24
Xem chi tiết
NL
2 tháng 8 2020 lúc 9:40

\(x=\frac{\left(5+\sqrt{2}\right)^2\sqrt{\left(5-\sqrt{2}\right)^2}-\left(5-\sqrt{2}\right)^2\sqrt{\left(5+\sqrt{2}\right)^2}}{\frac{\sqrt{\left(\sqrt{13}-3\right)\left(\sqrt{13}-2\right)}+\sqrt{\left(\sqrt{13}+3\right)\left(\sqrt{13}-2\right)}}{\sqrt{13-4}}}\)

\(=\frac{\left(5+\sqrt{2}\right)\left(5+\sqrt{2}\right)\left(5-\sqrt{2}\right)-\left(5-\sqrt{2}\right)\left(5-\sqrt{2}\right)\left(5+\sqrt{2}\right)}{\frac{\sqrt{19-5\sqrt{13}}+\sqrt{7+\sqrt{13}}}{3}}\)

\(=\frac{69\left(5+\sqrt{2}-5+\sqrt{2}\right)}{\frac{1}{\sqrt{2}}\left(\sqrt{38-10\sqrt{13}}+\sqrt{14+2\sqrt{13}}\right)}=\frac{276}{\sqrt{\left(5-\sqrt{13}\right)^2}+\sqrt{\left(\sqrt{13}+1\right)^2}}\)

\(=\frac{276}{5-\sqrt{13}+\sqrt{13}+1}=46\)

\(\Rightarrow A=...\)

Bình luận (0)
MT
Xem chi tiết
UN
Xem chi tiết
H24
22 tháng 12 2018 lúc 22:49

\(x=\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5-2\sqrt{13}}\)

\(\Rightarrow x^3=5+2\sqrt{13}+5-2\sqrt{13}+3\sqrt[3]{\left(5+2\sqrt{13}\right)\left(5-2\sqrt{13}\right)}.x\)

          \(=10+3x\sqrt[3]{25-52}\)

          \(=10+3x\sqrt[3]{-27}\)

           \(=10-9x\)

\(\Rightarrow x^3+9x-10=0\)

\(\Leftrightarrow x^3-x+10x-10=0\)

\(\Leftrightarrow x\left(x^2-1\right)+10\left(x-1\right)=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)+10\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x+10\right)=0\)

Vì \(x^2+x+10=\left(x+\frac{1}{2}\right)^2+\frac{39}{4}>0\forall x\)

=> x - 1 = 0

=> x = 1

Thay vào A = 12015 - 12016 = 0

Vậy A = 0

Bình luận (0)