Bài 9: Căn bậc ba

HT

\(x=\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5-2\sqrt{13}}\)

LH
21 tháng 8 2019 lúc 23:10

\(x=\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5-2\sqrt{13}}\)

<=>\(x^3=5+2\sqrt{13}+3.\sqrt[3]{5+2\sqrt{13}}.\sqrt[3]{5-2\sqrt{13}}\left(\sqrt[3]{5-2\sqrt{13}}+\sqrt[3]{5+2\sqrt{13}}\right)+5-2\sqrt{13}\)

<=> \(x^3=10+3\sqrt[3]{5^2-\left(2\sqrt{13}\right)^2}.x\)

<=> \(x^3=10+3\sqrt[3]{-27}.x=10-9x\)

<=> x3+9x-10=0

<=> x3-x2+x2-x+10x-10=0

<=>\(x^2\left(x-1\right)+x\left(x-1\right)+10\left(x-1\right)=0\)

<=> \(\left(x^2+x+10\right)\left(x-1\right)=0\)

<=> \(\left(x^2+2.\frac{1}{2}x+\frac{1}{4}+\frac{39}{4}\right)\left(x-1\right)=0\)

<=> \(\left[\left(x+\frac{1}{2}\right)^2+\frac{39}{4}\right]\left(x-1\right)=0\)

=> x-1=0 (vì \(\left(x+\frac{1}{2}\right)^2+\frac{39}{4}>0\))

<=> x=1

Bình luận (0)

Các câu hỏi tương tự
HT
Xem chi tiết
LM
Xem chi tiết
HT
Xem chi tiết
PQ
Xem chi tiết
HT
Xem chi tiết
AK
Xem chi tiết
TB
Xem chi tiết
KP
Xem chi tiết
H24
Xem chi tiết