Những câu hỏi liên quan
DM
Xem chi tiết
QL
Xem chi tiết
HM
25 tháng 9 2023 lúc 16:34

a) Tam giác BDC vuông tại C nên \(\sin \widehat {BDC} = \frac{{BC}}{{BD}} = \frac{a}{{2R}}.\)

b)

TH1: Tam giác ABC có góc A nhọn

\(\widehat {BAC} = \widehat {BDC}\) do cùng chắn cung nhỏ BC.

\( \Rightarrow \sin \widehat {BAC} = \sin \widehat {BDC} = \frac{a}{{2R}}.\)

TH2: Tam giác ABC có góc A tù

  

\(\widehat {BAC} + \widehat {BDC} = {180^o}\) do ABDC là tứ giác nội tiếp (O).

\( \Rightarrow \sin \widehat {BAC} = \sin ({180^o} - \widehat {BAC}) = \sin \widehat {BDC} = \frac{a}{{2R}}.\)

Vậy với góc A nhọn hay tù ta đều có \(2R = \frac{a}{{\sin A}}.\)

b) Nếu tam giác ABC vuông tại A thì BC là đường kính của (O).

Khi đó ta có: \(\sin A = \sin {90^o} = 1\) và \(a = BC = 2R\)

Do đó ta vẫn có công thức: \(2R = \frac{a}{{\sin A}}.\)

Bình luận (0)
BN
Xem chi tiết
NH
Xem chi tiết
PM
Xem chi tiết
LL
21 tháng 9 2019 lúc 21:48

Bài 2:

Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)\(AH\perp BC\)

\(\Rightarrow AH^2=HB.HC\)(Hệ thức lượng)

\(AH^2=25.64\)

\(AH=\sqrt{1600}=40cm\)

Xét \(\Delta ABH\)\(\widehat{H}=90^o\)

\(\Rightarrow\tan B=\frac{AH}{BH}\)\(=\frac{40}{25}=\frac{8}{5}\)

\(\Rightarrow\widehat{B}\approx58^o\)

Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)

\(\Rightarrow\widehat{B}+\widehat{C}=90^o\)

\(58^o+\widehat{C}=90^o\)

\(\Rightarrow\widehat{C}\approx90^o-58^o\)

\(\widehat{C}\approx32^o\)

Bình luận (0)
SK
Xem chi tiết
H24
5 tháng 7 2017 lúc 21:29

Ôn tập Hệ thức lượng trong tam giác vuông

a/

Áp dụng định lí Pitago vào ∆ABC vuông tại A ta được

\(BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)

\(\sin B=\dfrac{AC}{BC}=\dfrac{8}{10}=\dfrac{4}{5}\Rightarrow\)B^\(\approx53^0\)

C^\(=90^0-53^0\approx37^0\)

b/

Vì AD là tia phân giác A^ nên \(\dfrac{DB}{DC}=\dfrac{AB}{AC}=\dfrac{3}{4}\)

\(DB=BC-DC=10-DC\)

Suy ra \(\dfrac{10-DC}{DC}=\dfrac{4}{6}\Rightarrow60-6.DC=4.DC\)

\(\Leftrightarrow10.DC=60\Leftrightarrow DC=6\left(cm\right)\)

Suy ra \(DB=10-6=4\left(cm\right)\)

Bình luận (4)
NT
7 tháng 8 2019 lúc 7:56

undefinedpundefined

Bình luận (0)
DD
Xem chi tiết
NP
Xem chi tiết
NL
20 tháng 7 2021 lúc 22:52

undefined

Bình luận (0)
NL
20 tháng 7 2021 lúc 22:51

Kẻ đường cao AH ứng với BC, đặt \(CH=x\Rightarrow BH=4-x\)

Trong tam giác vuông ABH

\(tanB=\dfrac{AH}{BH}\Rightarrow AH=BH.tanB=\left(4-x\right).tan70^0\)

Trong tam giác vuông ACH: 

\(tanC=\dfrac{AH}{CH}\Rightarrow AH=CH.tanC=x.tan45^0=x\)

\(\Rightarrow\left(4-x\right)tan70^0=x\)

\(\Leftrightarrow\left(1+tan70^0\right)x=4.tan70^0\)

\(\Leftrightarrow x=\dfrac{4tan70^0}{1+tan70^0}\approx2,2\left(cm\right)\)

\(\Rightarrow CH=AH=2,2\left(cm\right)\)

\(AC=\sqrt{CH^2+AH^2}=AH\sqrt{2}\approx3,1\left(cm\right)\)

\(S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{1}{2}.2,2.4=4,4\left(cm^2\right)\)

Bình luận (0)
BB
Xem chi tiết
NQ
Xem chi tiết
NT
17 tháng 8 2023 lúc 19:32

3:

góc C=90-50=40 độ

Xét ΔABC vuông tại A có sin C=AB/BC

=>4/BC=sin40

=>\(BC\simeq6,22\left(cm\right)\)

\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)

1:

góc C=90-60=30 độ

Xét ΔABC vuông tại A có

sin B=AC/BC

=>3/BC=sin60

=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)

=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)

Bình luận (1)