PTĐTTNT
a/ x^2 + y^2 - xz + 2xy - yz
b/ 12y^2 - 2 - 5y
c/ x^3 - xz ^2 - 4x^2y + 4xyz + 4xyt - 4xt^2
giúp mình với
a) xy+xz+y^2+yz
b) x^3+2x^2+x
c) x^2-y^2+x-y
d) 4x^2-25
e) 16y^2-9
giải chi tiết nha
\(a,=\left(x+y\right)\left(y+z\right)\\ b,=x\left(x^2+2x+1\right)=x\left(x+1\right)^2\\ c,=\left(x-y\right)\left(x+y\right)+\left(x-y\right)=\left(x+y+1\right)\left(x-y\right)\\ d,= \left(2x-5\right)\left(2x+5\right)\\ e,=\left(4y-3\right)\left(4y+3\right)\)
Phân tích đa thức thành nhân tử
1: ax+ay-4x-4y
2: x^2+ab+ax+bx
3: ax+a-bx-b+cx+c
4: ab(x^2+y^2)+xy(a^2+b^2)
5: ab(x^2+1)+x(a^2+b^2)
6: x^2-2xy+y^2-4
7: x^2-y^2+4x+4
8: x^2-2xy+y^2-1
9: 9-x^2-2xy-x^2
10: 25-x^2+4xy-4y^2
11: x^2+xy+xz-x-y-z
12: x^2-2xy+3xz+x-2y+3z
13: 4x^2-9y^2-4x-6y
14: x^3-y^3+2x^2-2y^2
15: x^2+y^2+2xy+yz+zx
16: x^3+y^3+x^2y+xy^2+xz^2+yz^2
Mọi người vào giải hộ em với, em đang cần gấp ạ :))
1: \(=a\left(x+y\right)-4\left(x+y\right)=\left(x+y\right)\left(a-4\right)\)
2: \(=x\left(x+b\right)+a\left(x+b\right)=\left(x+b\right)\left(x+q\right)\)
3: \(=a\left(x+1\right)-b\left(x+1\right)+c\left(x+1\right)\)
\(=\left(x+1\right)\left(a-b+c\right)\)
6: \(=\left(x-y\right)^2-4=\left(x-y-2\right)\left(x-y+2\right)\)
a) 2xy + 3z +6y + xz
b) 4x^2 - 4xy - 9t^2 + y^2
c) x^4 - 9x^3 + x^2 - 9x
d) x^3 - 3x^2y + 3xy^2 - y^3 - z^3
a) \(2xy+3z+6y+xz\)
\(=2xy+2.3y\)
\(=2y\left(x+3\right)+3z+xz\)
\(=2y\left(x+3\right)+z\left(x+3\right)\)
\(=\left(x+3\right)\left(2y+z\right)\)
c) \(x^4-9x^3+x^2-9x\)
\(=x\left(x^3-9x^2+x-9\right)\)
\(=x\left(x-9\right)\left(x^2+1\right)\)
Phân tích đa thức thành nhân tử
1, x\(^2\)-xy+x-y
2, xz+yz-5x-5y
3, 3x\(^2\)-3xy-5x+5y
4, x\(^2\)-2xy+y\(^2\)-xz+yz
5, 3x\(^2\)+6xy+3y\(^2\)-3z\(^2\)
6, 45+x\(^{^{ }3}\)-5x\(^2\)-9x
7, x\(^2\)-6x+5
8,x\(^2\)+7x+12
9, 2x\(^2\)-7x+3
10, 3x\(^2\)-12y\(^2\)
11, 5xy\(^2\)-10xyz+5xz\(^2\)
12,x\(^2\)-y\(^2\)-x+y
13, a\(^3\)x-ab+b-x
14, (1+x\(^2\))-4x(1-x\(^2\))
CÁC CẬU GIẢI CHI TIẾT GIÚP MÌNH VỚI Ạ
13: =x(a^3-1)-b(a-1)
=x(a-1)(a^2+a+1)-b(a-1)
=(a-1)(a^2x+a*x+x-b)
12: =(x-y)(x+y)-(x-y)
=(x-y)(x+y-1)
10: =3(x^2-4y^2)
=3(x-2y)*(x+2y)
7: =x^2-x-5x+5=(x-1)(x-5)
8: =x^2+3x+4x+12=(x+3)(x+4)
9: =2x^2-6x-x+3=(x-3)(2x-1)
Chọn đáp án đúng
\({ (x^{3}+3x^{2}y+3xy^{2}+y^{3}-z^{3}):(x+y-z) }\)
\(A. { x^{2}+y^{2}+z^{2}+2xy+xz+yz }\)
\(B. { x^{2}+y^{2}+z^{2}+2xy-xz-yz } \)
\(D. { x^{2}+y^{2}-z^{2}+2xy-xz-yz } \)
\(\left(x^3+3x^2y+3xy^2+y^3-z^3\right):\left(x+y-z\right)\\ =\left[\left(x+y\right)^3-z^3\right]:\left(x+y-z\right)\\ =\left(x+y-z\right)\left[\left(x+y\right)^2+z\left(x+y\right)+z^2\right]:\left(x+y-z\right)\\ =x^2+2xy+y^2+xz+yz+z^2\)
Vậy chọn A
Cho 3x^2+y^2+2xy-16x-4y+22=0 . Tính D= 1/𝑥𝑦
Cho 4x^2+2y^2+z^2+14=2(xz+ỹ+5x+4y) . Tính E=x+y+z
Bài 1: Phân tích đa thức thành nhân tử
1. 5x-10-xy+2y
2.2x^2+2y^2-4xy-xz+yz
3.5x^2y-10xy^2
4.3x^2-6xy+3y^2-12z^2
5.x^2+4xy-16+4y^2
6.7x-6x^2-2
7.(2x+y)^2+x(2x+y)
8.x(x-y)+5x-5y
9.x^2-y^2+2x+1
10.x^3-9x
11.xy-2y+x-2
12.x^3-3x^2-4x+12
13.3x-x^2-2xy+3y-y^2
\(1,=\left(x-2\right)\left(5-y\right)\\ 2,=2\left(x-y\right)^2-z\left(x-y\right)=\left(x-y\right)\left(2x-2y-z\right)\\ 3,=5xy\left(x-2y\right)\\ 4,=3\left(x^2-2xy+y^2-4z^2\right)=3\left[\left(x-y\right)^2-4z^2\right]\\ =3\left(x-y-2z\right)\left(x-y+2z\right)\\ 5,=\left(x+2y\right)^2-16=\left(x+2y-4\right)\left(x+2y+4\right)\\ 6,=-\left(6x^2-3x-4x+2\right)=-\left(2x-1\right)\left(3x-2\right)\\ 7,=\left(2x+y\right)\left(2x+y+x\right)=\left(2x+y\right)\left(3x+y\right)\\ 8,=\left(x-y\right)\left(x+5\right)\\ 9,=\left(x+1\right)^2-y^2=\left(x-y+1\right)\left(x+y+1\right)\\ 10,=\left(x^2-9\right)x=x\left(x-3\right)\left(x+3\right)\\ 11,=\left(x-2\right)\left(y+1\right)\\ 12,=\left(x-3\right)\left(x^2-4\right)=\left(x-3\right)\left(x-2\right)\left(x+2\right)\\ 13,=3\left(x+y\right)-\left(x+y\right)^2=\left(x+y\right)\left(3-x-y\right)\)
Phân tích đa thức sau thành nhân tử:
a. x\(^3\) - 4x\(^2\) + 4x - xz\(^2\)
b. x\(^2\) - 2xy + y\(^2\) - z\(^2\) + 10z - 25
\(a,=x\left(x^2-4x+4-z^2\right)=x\left[\left(x-2\right)^2-z^2\right]=x\left(x-z-2\right)\left(x+z-2\right)\\ b,=\left(x-y\right)^2-\left(z-5\right)^2=\left(x-y-z+5\right)\left(x-y+z-5\right)\)
\(x^3-4x^2+4x-xz^2=x\left(x^2-4x+4-z^2\right)\)
\(=x\left[\left(x-2\right)^2-z^2\right]=x\left(x-2-z\right)\left(x-2+z\right)\)
\(x^2-2xy+y^2-z^2+10z-25\)
\(=\left(x-y\right)^2-\left(z-5\right)^2\)
\(=\left(x-y+z-5\right)\left(x-y-z+5\right)\)
a. x3 - 4x2 + 4x - xz2
= x(x2 - 4x + 4 ) - z2
= x(x - 4)2 - z2
=x( x - 4 - z ) ( x - 4 + z )
b. x2 - 2xy +y2 - z2 + 10z - 25
= ( x - y )2 - ( z - 5 )2
= ( x - y - z + 5 )(x - y + z - 5 )
1) Phân tích đa thức thành nhân tử
a) (2x+1)^2 - 2(2x+1) (x-3) + (x-3)^2
b) xy +xz + 3y +3z
c) xy - xz + y -z
d) x^2 - xy - 8x + 8y
e) x^2 + 2xy + y^2 - xz - yz
f) 25 - 4x^2 - 4xy - y^2
a, \(\left(2x+1\right)^2-2\left(2x+1\right)\left(x-3\right)+\left(x-3\right)^2\)
\(=\left(2x+1-x+3\right)^2=\left(x+4\right)^2\)
b, \(xy+xz+3y+3z=x\left(y+z\right)+3\left(y+z\right)=\left(x+3\right)\left(y+z\right)\)
c, \(xy-xz+y-z=x\left(y-z\right)+\left(y-z\right)=\left(x+1\right)\left(y-z\right)\)
d, \(x^2-xy-8x+8y=\left(x^2-xy\right)-\left(8x-8y\right)\)
\(=x\left(x-y\right)-8\left(x-y\right)=\left(x-8\right)\left(x-y\right)\)
e, \(x^2+2xy+y^2-xz-yz=\left(x^2+2xy+y^2\right)-\left(xz+yz\right)\)
\(=\left(x+y\right)^2-z\left(x+y\right)=\left(x+y+z\right)\left(x+y\right)\)
f, \(25-4x^2-4xy-y^2=25-\left(4x^2+4xy+y^2\right)\)
\(=5^2-\left(2x+y\right)^2=\left(5-2x-y\right)\left(5+2x+y\right)\)
1,
a, (2x + 1- x + 3)2 = (x+4)2
b,\(x\left(y+z\right)+3\left(y+z\right)=\left(y+z\right)\left(x+3\right)\)
c, \(x\left(y-z\right)+\left(y-z\right)=\left(y-z\right)\left(x+1\right)\)
d,\(x\left(x-y\right)+8\left(y-x\right)\)=\(\left(x-y\right)\left(x-8\right)\)
e,\(\left(x+y\right)^2-z\left(x+y\right)\)=\(\left(x+y\right)\left(x+y-z\right)\)
f,\(25-\left(4x^2+4xy+y^2\right)=5^2-\left(2x+y\right)^2\)
\(=\left(5+2x+y\right)\left(5-2x-y\right)\)
Chúc các bn hc tốt
(2xy: x^2 - y^2 + x-y : 2x + 2y) : x+y:2x + y:y-x
x^2+3xy: x^2 - 9y^2 + 2x^2 - 5xy- 3y^2 : 6xy - x^2- 9y^2 - x^2+ xz + xy + yz: 3yz - x^2 - xz + 3xy