cotan alpha = 2.Tính B=sina+2cosa/sin^3a-cos^3a
Giúp mình với các bạn ơi!!!!!!!!!!!!!!
Cho sina*cosa=0.22. Tính giá trị của biểu thức M=\(\sin^3a+\cos^3a-2.\sin a.\cos a\)
a) cho sin alpha = 4/5 tính a = 5 sin alpha + 3 cos alpha b) cho cotan alpha = 1/3 Tính B = sin alpha trừ cos alpha trên sin alpha + cos alpha bài này cho học sinh khá giỏi nè
\(\dfrac{sina}{sin^3a+\cos^3a}\)
Cho 0°< α<β< 90°. Chứng minh:
a) sin α < tan α
b) cos α < cotan α
c) sin α < sin β
d) cos α > cos β
e) tan α < tan β
f) cotan α > cotan β
Cho sina + cosa =2. Tính sin^3a + cos^3a
ta có : \(sin^3a+cos^3a=\left(sina+cosa\right)^3-3sina.cosa\left(sina+cosa\right)\)
\(=2^3-3sina.cosa\left(2\right)=8-6sina.cosa\)
\(=11-3sin^2a-6sina.cosa-3cos^2a=11-3\left(sin+cos\right)^2=11-3.2^2=11-12=-1\)
cho sina+cosa=5/4
a, A=sina.cosa b, B= sina-cosa c,C=sin^3a-cos^3a
help me
\(sina+cosa=\frac{5}{4}\Rightarrow\left(sina+cosa\right)^2=\frac{25}{16}\)
\(\Rightarrow sin^2a+cos^2a+2sina.cosa=\frac{25}{16}\)
\(sina.cosa=\frac{\frac{25}{16}-1}{2}=\frac{9}{32}\)
b/ \(\left(sina-cosa\right)^2=sin^2a+cos^2a-2sinacosa\)
\(\left(sina-cosa\right)^2=1-2.\frac{9}{32}=\frac{7}{16}\)
\(\Rightarrow sina-cosa=\pm\frac{\sqrt{7}}{4}\)
c/ \(sin^3a-cos^3a=\left(sina-cosa\right)\left(sin^2a+cos^2a+sina.cosa\right)\)
\(=\left(sina-cosa\right)\left(1+\frac{9}{32}\right)=\pm\frac{41\sqrt{7}}{128}\)
cho tam giác abc. cmr sin^3a*cos(b-c0+sin^3b*cos(c-a)+sin^3c*cos(a-b)=sina*sinb*sinc
cho tam giác abc. cmr sin^3a*cos(b-c)+sin^3b*cos(c-a)+sin^3c*cos(a-b)=sina*sinb*sinc
Chứng minh các đẳng thức sau:
a.\(\frac{1+sin^2x}{1-sin^{2^{ }}x}=1+2tan^2x\)
b.\(\frac{sin^3a-cos^3a}{sina-cosa}-sina.cosa=1\)
c.\(\frac{1+cosx+cos2x+cos3x}{2cos^2x+cosx-1}=2cosx\)
e.\(\frac{1-2sin^2a}{cosa+sina}+\frac{2cos^2a-1}{cosa-sina}=2cosa\)
d.\(\frac{1-cosx+cos2x}{sin2x-sinx}=cotx\)
MỌI NGƯỜI GIÚP MÌNH VỚI .MÌNH CẢM ƠN RẤT NHIỀU
\(\frac{1+sin^2x}{1-sin^2x}=\frac{1+sin^2x}{cos^2x}=\frac{1}{cos^2x}+\frac{sin^2x}{cos^2x}=1+tan^2x+tan^2x=1+2tan^2x\)
\(\frac{sin^3a-cos^3a}{sina-cosa}-sina.cosa=\frac{\left(sina-cosa\right)\left(sin^2a+cos^2a+sina.cosa\right)}{sina-cosa}-sina.cosa\)
\(=sin^2a+cos^2a+sina.cosa-sina.cosa=1\)
\(\frac{1+cos2x+cosx+cos3x}{2cos^2x-1+cosx}=\frac{1+2cos^2x-1+2cosx.cos2x}{cos2x+cosx}=\frac{2cosx\left(cosx+cos2x\right)}{cos2x+cosx}=2cosx\)
\(\frac{1-2sin^2a}{cosa+sina}+\frac{2cos^2a-1}{cosa-sina}=\frac{cos^2a-sin^2a}{cosa+sina}+\frac{cos^2a-sin^2a}{cosa-sina}\)
\(=\frac{\left(cosa+sina\right)\left(cosa-sina\right)}{cosa+sina}+\frac{\left(cosa+sina\right)\left(cosa-sina\right)}{cosa-sina}=cosa-sina+cosa+sina=2cosa\)
\(\frac{1-cosx+cos2x}{sin2x-sinx}=\frac{1-cosx+2cos^2x-1}{2sinx.cosx-sinx}=\frac{cosx\left(2cosx-1\right)}{sinx\left(2cosx-1\right)}=\frac{cosx}{sinx}=cotx\)
rút gọn A=\(\frac{sin^3a-cos^3a}{sina-cosa}+sina+cosa\)
\(A=\frac{\left(sina-cosa\right)\left(sin^2a+cos^2a+sina.cosa\right)}{sina-cosa}+sina+cosa\)
\(=1+sina.cosa+sina+cosa\)
\(=\left(sina+1\right)\left(cosa+1\right)\)