LH

cotan alpha = 2.Tính B=sina+2cosa/sin^3a-cos^3a

NT
22 tháng 8 2024 lúc 8:59

\(1+cot^2a=\dfrac{1}{sin^2a}\Rightarrow sin^2a=\dfrac{1}{1+cot^2a}=\dfrac{1}{1+4}=\dfrac{1}{5}\Rightarrow sina=\pm\dfrac{\sqrt{5}}{5}\)

\(TH1:sina=\dfrac{\sqrt{5}}{5}\)

\(B=sina+\dfrac{2cosa}{sin^3a-cos^3a}=sina+\dfrac{2cosa}{\left(sina-cosa\right)\left(sin^2a+cos^2a-sinacosa\right)}=sina+\dfrac{2cosa}{\left(sina-cosa\right)\left(1-sinacosa\right)}\)

\(cos^2a=1-sin^2a=1-\dfrac{1}{5}=\dfrac{4}{5}\Rightarrow cosa=\dfrac{2\sqrt[]{5}}{5}\left(cota=2>0\right)\)

\(B=sina+\dfrac{2cosa}{\left(sina-cosa\right)\left(1-sinacosa\right)}=\dfrac{\sqrt{5}}{5}+\dfrac{2.\dfrac{\sqrt{5}}{5}}{\left(\dfrac{\sqrt{5}}{5}-\dfrac{2\sqrt{5}}{5}\right)\left(1-\dfrac{\sqrt{5}}{5}.\dfrac{2\sqrt{5}}{5}\right)}\)

\(B=\dfrac{\sqrt{5}}{5}+\dfrac{2.\dfrac{\sqrt{5}}{5}}{\left(-\dfrac{\sqrt{5}}{5}\right)\left(1-\dfrac{2}{5}\right)}=\dfrac{\sqrt{5}}{5}+\dfrac{10}{3}=\dfrac{50+3\sqrt{5}}{15}\)

\(TH2:sina=-\dfrac{\sqrt{5}}{5}\Rightarrow cosa=-\dfrac{2\sqrt[]{5}}{5}\left(cota=2>0\right)\)

\(B=sina+\dfrac{2cosa}{\left(sina-cosa\right)\left(1-sinacosa\right)}=-\dfrac{\sqrt{5}}{5}+\dfrac{2.\left(-\dfrac{\sqrt{5}}{5}\right)}{\left(-\dfrac{\sqrt{5}}{5}+\dfrac{2\sqrt{5}}{5}\right)\left(1-\dfrac{-\sqrt{5}}{5}.\dfrac{-2\sqrt{5}}{5}\right)}\)

\(B=-\dfrac{\sqrt{5}}{5}+\dfrac{-2.\dfrac{\sqrt{5}}{5}}{\left(\dfrac{\sqrt{5}}{5}\right)\left(1-\dfrac{2}{5}\right)}=-\dfrac{\sqrt{5}}{5}-\dfrac{10}{3}=-\dfrac{\left(50+3\sqrt{5}\right)}{15}\)

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
PB
Xem chi tiết
DN
Xem chi tiết
H24
Xem chi tiết
TV
Xem chi tiết
PB
Xem chi tiết
TK
Xem chi tiết
PB
Xem chi tiết
NH
Xem chi tiết