Những câu hỏi liên quan
H24
Xem chi tiết
NT
22 tháng 8 2021 lúc 23:40

\(2\sqrt{40\sqrt{3}}-2\sqrt{\sqrt{75}}-3\sqrt{5\sqrt{48}}\)

\(=2\cdot\sqrt{40\sqrt{3}}-2\cdot\sqrt{5\sqrt{3}}-3\cdot\sqrt{20\sqrt{3}}\)

\(=2\cdot2\sqrt{10}\cdot\sqrt{\sqrt{3}}-2\cdot\sqrt{5}\cdot\sqrt{\sqrt{3}}-6\sqrt{5}\cdot\sqrt{\sqrt{3}}\)

\(=4\sqrt{10}\sqrt{\sqrt{3}}-4\cdot\sqrt{5}\cdot\sqrt{\sqrt{3}}\)

Bình luận (0)
DV
Xem chi tiết
NM
9 tháng 10 2021 lúc 7:56

\(1,\\ a,=\sqrt{\left(3+\sqrt{7}\right)^2}-\sqrt{\left(\sqrt{7}-1\right)^2}=3+\sqrt{7}-\sqrt{7}+1=4\\ b,K=\dfrac{\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{2}\left(\sqrt{3}-1\right)}=\dfrac{\sqrt{3}-1}{\sqrt{2}\left(\sqrt{3}-1\right)}=\dfrac{1}{\sqrt{2}}=\dfrac{\sqrt{2}}{2}\\ c,=\sqrt{\left(6-2\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-4\right)^2}=6-2\sqrt{6}+2\sqrt{6}-4=2\\ e,=\sqrt{\left(2-\sqrt{2}\right)^2}-\left(\sqrt{6}-\sqrt{2}\right)=2-\sqrt{2}-\sqrt{6}+\sqrt{2}=2-\sqrt{6}\)

\(2,\\ a,A=\dfrac{x-3\sqrt{x}+3\sqrt{x}+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}+3}{x+9}\\ A=\dfrac{x+9}{\left(\sqrt{x}-3\right)\left(x+9\right)}=\dfrac{1}{\sqrt{x}-3}\\ b,x=4+2\sqrt{3}\Leftrightarrow\sqrt{x}=\sqrt{3}+1\\ \Leftrightarrow A=\dfrac{1}{\sqrt{3}+1-3}=\dfrac{1}{\sqrt{3}+2}=2-\sqrt{3}\)

Bình luận (1)
HX
Xem chi tiết
H24
22 tháng 10 2016 lúc 13:43

ta có: A3=\(6\sqrt{3}+10-6\sqrt{3}+10-3\sqrt[3]{\left(6\sqrt{3}+10\right)\left(6\sqrt{3}-10\right)}.\left(\sqrt[3]{6\sqrt{3}+10}-\sqrt[3]{6\sqrt{3}-10}\right)\)

=\(20-3.\sqrt[3]{8}.A\)=\(20-6A\)

do đó A3=20-6A↔A3+6A-20=0↔(A2+2A+10)(A-2)=0

dễ thấy A2+2A+10>0→A=2

b) giống a)

c)giống b)

Bình luận (0)
BD
Xem chi tiết
NT
12 tháng 10 2022 lúc 15:53

Bài 2: 

\(A=\dfrac{2\sqrt{3+\sqrt{5-2\sqrt{3}-1}}}{\sqrt{2}\left(\sqrt{3}+1\right)}\)

\(=\dfrac{2\sqrt{3+\sqrt{3}-1}}{\sqrt{2}\left(\sqrt{3}+1\right)}=1\)

Bài 1: 

\(=\dfrac{2\left(3\sqrt{2}-2\sqrt{3}+\sqrt{5}\right)}{3\left(3\sqrt{2}-2\sqrt{3}+\sqrt{5}\right)}=\dfrac{2}{3}\)

Bình luận (0)
AS
Xem chi tiết
AH
20 tháng 7 2020 lúc 11:35

1.

$\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}=\sqrt{3+1+2\sqrt{3}}-\sqrt{3+1-2\sqrt{3}}$

$=\sqrt{(\sqrt{3}+1)^2}-\sqrt{(\sqrt{3}-1)^2}$

$=|\sqrt{3}+1|-|\sqrt{3}-1|=2$

2.

\(\sqrt{12+6\sqrt{3}+\sqrt{12-6\sqrt{3}}}=\sqrt{12+6\sqrt{3}+\sqrt{9+3-2\sqrt{9.3}}}=\sqrt{12+6\sqrt{3}+\sqrt{(3-\sqrt{3})^2}}\)

\(=\sqrt{12+6\sqrt{3}+3-\sqrt{3}}=\sqrt{15+5\sqrt{3}}\)

Bình luận (0)
AH
20 tháng 7 2020 lúc 11:39

3.

\(\sqrt{9-4\sqrt{2}+\sqrt{9+4\sqrt{2}}}=\sqrt{9-4\sqrt{2}+\sqrt{8+1+2\sqrt{8.1}}}\)

\(=\sqrt{9-4\sqrt{2}+\sqrt{2\sqrt{2}+1)^2}}=\sqrt{9-4\sqrt{2}+2\sqrt{2}+1}=\sqrt{10-2\sqrt{2}}\)

4.

\(\sqrt{\sqrt{2}+2+\sqrt{4+\sqrt{9-\sqrt{32}}}}=\sqrt{\sqrt{2}+2+\sqrt{4+\sqrt{8+1-2\sqrt{8.1}}}}\)

\(=\sqrt{\sqrt{2}+2+\sqrt{4+\sqrt{(\sqrt{8}-1)^2}}}\) \(=\sqrt{\sqrt{2}+2+\sqrt{4+\sqrt{8}-1}}=\sqrt{\sqrt{2}+2+\sqrt{3+2\sqrt{2}}}\)

\(=\sqrt{\sqrt{2}+2+\sqrt{(2+1+2\sqrt{2}}}=\sqrt{\sqrt{2}+2+\sqrt{(\sqrt{2}+1)^2}}=\sqrt{\sqrt{2}+2+\sqrt{2}+1}\)

\(=\sqrt{3+2\sqrt{2}}=\sqrt{(\sqrt{2}+1)^2}=\sqrt{2}+1\)

Bình luận (0)
AH
20 tháng 7 2020 lúc 11:44

5.

\(\sqrt{6+2\sqrt{5}-\sqrt{29+12\sqrt{5}}}=\sqrt{6+2\sqrt{5}-\sqrt{20+9+2\sqrt{20.9}}}\)

\(=\sqrt{6+2\sqrt{5}-\sqrt{(\sqrt{20}+3)^2}}=\sqrt{6+2\sqrt{5}-(\sqrt{20}+3)}=\sqrt{3}\)

6.

\(\sqrt{8+\sqrt{8}+\sqrt{20}+\sqrt{40}}-\sqrt{\sqrt{49}+\sqrt{40}}\)

\(=\sqrt{8+2\sqrt{2}+2\sqrt{5}+2\sqrt{10}}-\sqrt{7+2\sqrt{10}}\)

\(=\sqrt{(2+5+2\sqrt{2.5})+2(\sqrt{2}+\sqrt{5})+1}-\sqrt{2+5+2\sqrt{2.5}}\)

\(=\sqrt{(\sqrt{2}+\sqrt{5})^2+2(\sqrt{2}+\sqrt{5})+1}-\sqrt{(\sqrt{2}+\sqrt{5})^2}\)

\(=\sqrt{(\sqrt{2}+\sqrt{5}+1)^2}-\sqrt{(\sqrt{2}+\sqrt{5})^2}=|\sqrt{2}+\sqrt{5}+1|-|\sqrt{2}+\sqrt{5}|=1\)

Bình luận (0)
HC
Xem chi tiết
PL
15 tháng 7 2018 lúc 21:29

\(a.\sqrt{8-\sqrt{28}}+\sqrt{21+12\sqrt{3}}=\sqrt{7-2\sqrt{7}+1}+\sqrt{12+2.2\sqrt{3}.3+9}=\sqrt{7}-1+2\sqrt{3}+3=2\sqrt{3}+\sqrt{7}+2\) \(b.\sqrt{5+\sqrt{24}}-\sqrt{57-40\sqrt{2}}=\sqrt{3+2.\sqrt{3}.\sqrt{2}+2}-\sqrt{32-2.4\sqrt{2}.5+25}=\sqrt{3}+\sqrt{2}-4\sqrt{2}+5=\sqrt{3}-3\sqrt{2}+5\) \(c.\sqrt{13-\sqrt{160}}+\sqrt{53+4\sqrt{90}}=\sqrt{8-2.2\sqrt{2}.\sqrt{5}+5}+\sqrt{45+2.3\sqrt{5}.2\sqrt{2}+8}=2\sqrt{2}-\sqrt{5}+3\sqrt{5}+2\sqrt{2}=4\sqrt{2}+2\sqrt{5}\)

Bình luận (0)
H24
Xem chi tiết
TU
Xem chi tiết
AN
29 tháng 8 2019 lúc 16:29

a/ \(\sqrt{2}+\sqrt{6}\)

b/ Sửa đề:

\(\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}.\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}=1\)

c/ \(1+\sqrt{2}+\sqrt{5}\)

Bình luận (0)
TU
29 tháng 8 2019 lúc 19:59

giải rõ ra hộ mình với

Bình luận (0)
AN
30 tháng 8 2019 lúc 8:58

a/ \(2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}\)

\(=2\sqrt{3+\sqrt{5-\sqrt{12+2.2\sqrt{3}+1}}}\)

\(=2\sqrt{3+\sqrt{5-\sqrt{\left(2\sqrt{3}+1\right)^2}}}\)

\(=2\sqrt{3+\sqrt{5-\left(2\sqrt{3}+1\right)}}\)

\(=2\sqrt{3+\sqrt{4-2\sqrt{3}}}\)

\(=2\sqrt{3+\sqrt{3-2\sqrt{3}+1}}\)

\(=2\sqrt{3+\sqrt{\left(\sqrt{3}-1\right)^2}}\)

\(=2\sqrt{3+\left(\sqrt{3}-1\right)}\)

\(=\sqrt{2}\sqrt{4+2\sqrt{3}}\)

\(=\sqrt{2}\sqrt{3+2\sqrt{3}+1}\)

\(=\sqrt{2}\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(=\sqrt{2}\left(\sqrt{3}+1\right)\)

\(=\sqrt{2}+\sqrt{6}\)

Bình luận (0)
LT
Xem chi tiết
AH
19 tháng 7 2021 lúc 16:49

Lời giải:

a. \(\sqrt{6-2\sqrt{5}}=\sqrt{5-2\sqrt{5}.\sqrt{1}+1}=\sqrt{(\sqrt{5}-1)^2}=\sqrt{5}-1\)

b. \(\sqrt{7-4\sqrt{3}}=\sqrt{4-2\sqrt{4}.\sqrt{3}+3}=\sqrt{(\sqrt{4}-\sqrt{3})^2}=\sqrt{4}-\sqrt{3}=2-\sqrt{3}\)

c.

\(\sqrt{3-2\sqrt{2}}-\sqrt{6-4\sqrt{2}}=\sqrt{2-2\sqrt{2}+1}-\sqrt{4-4\sqrt{2}+2}\)

\(=\sqrt{(\sqrt{2}-1)^2}-\sqrt{(\sqrt{4}-\sqrt{2})^2}\)

\(=|\sqrt{2}-1|-|\sqrt{4}-\sqrt{2}|=\sqrt{2}-1-(2-\sqrt{2})=2\sqrt{2}-3\)

d.

\(=\sqrt{13+30\sqrt{2+\sqrt{(\sqrt{8}+1)^2}}}=\sqrt{13+30\sqrt{2+\sqrt{8}+1}}\)

\(=\sqrt{13+30\sqrt{3+2\sqrt{2}}}=\sqrt{13+30\sqrt{(\sqrt{2}+1)^2}}\)

\(=\sqrt{13+30(\sqrt{2}+1)}=\sqrt{43+30\sqrt{2}}=\sqrt{18+2\sqrt{18.25}+25}\)

\(=\sqrt{(\sqrt{18}+\sqrt{25})^2}=\sqrt{18}+\sqrt{25}=5+3\sqrt{2}\)

 

 

Bình luận (0)
NT
19 tháng 7 2021 lúc 20:17

a) \(\sqrt{6-2\sqrt{5}}=\sqrt{5}-1\)

b) \(\sqrt{7-4\sqrt{3}}=2-\sqrt{3}\)

c) \(\sqrt{3-2\sqrt{2}}-\sqrt{6-4\sqrt{2}}=\sqrt{2}-1-2+\sqrt{2}=-3+2\sqrt{2}\)

d) Ta có: \(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)

\(=\sqrt{13+30\sqrt{2+1+2\sqrt{2}}}\)

\(=\sqrt{13+30\left(\sqrt{2}+1\right)}\)

\(=\sqrt{43+30\sqrt{2}}\)

\(=5+3\sqrt{2}\)

Bình luận (0)
DK
Xem chi tiết
NT
11 tháng 7 2021 lúc 22:07

a) \(\sqrt{19-6\sqrt{2}}=3\sqrt{2}-1\)

b) \(\sqrt{11-6\sqrt{2}}=3-\sqrt{2}\)

d) \(\sqrt{21+12\sqrt{3}}=2\sqrt{3}+3\)

e) \(\sqrt{57-40\sqrt{2}}=4\sqrt{2}-5\)

Bình luận (0)
NT
11 tháng 7 2021 lúc 22:11

undefined

Bình luận (0)