Những câu hỏi liên quan
SB
Xem chi tiết
HP
25 tháng 6 2021 lúc 8:23

a, \(cos^2x-cosx=0\)

\(\Leftrightarrow cosx\left(cosx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cosx=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=0\end{matrix}\right.\)

b, \(2sin2x+\sqrt{2}sin4x=0\)

\(\Leftrightarrow2sin2x+2\sqrt{2}sin2x.cos2x=0\)

\(\Leftrightarrow sin2x\left(1+\sqrt{2}cos2x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\\1+\sqrt{2}cos2x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=k\pi\\cos2x=-\dfrac{\sqrt{2}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{k\pi}{2}\\2x=\dfrac{3\pi}{4}+k2\pi\\2x=\dfrac{\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{k\pi}{2}\\x=\dfrac{3\pi}{8}+k\pi\\x=\dfrac{\pi}{8}+k\pi\end{matrix}\right.\)

Bình luận (0)
LA
25 tháng 6 2021 lúc 8:41

a, \(cos^2x-cosx=0\)

\(\Leftrightarrow cosx\left(cosx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cosx=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=k2\pi\end{matrix}\right.\) (k ∈ Z)

Vậy...

b, \(2sin2x+\sqrt{2}sin4x=0\)

\(\Leftrightarrow2sin2x+2\sqrt{2}sin2x.cos2x=0\)

\(\Leftrightarrow2sin2x\left(1+\sqrt{2}cos2x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\\cos2x=\dfrac{-\sqrt{2}}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2x=k\pi\\2x=\pm\dfrac{3\pi}{4}+k2\pi\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{k\pi}{2}\\x=\pm\dfrac{3\pi}{8}+k\pi\end{matrix}\right.\)

Vậy...

c, \(8cos^2x+2sinx-7=0\)

\(\Leftrightarrow8\left(1-sin^2x\right)+2sinx-7=0\)

\(\Leftrightarrow8sin^2x-2sinx-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\dfrac{1}{2}\\sinx=-\dfrac{1}{4}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\\x=arcsin\left(-\dfrac{1}{4}\right)+k2\pi\\x=\pi-arcsin\left(-\dfrac{1}{4}\right)+k2\pi\end{matrix}\right.\)

Vậy...

d, \(4cos^4x+cos^2x-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos^2x=\dfrac{3}{4}\\cos^2x=-1\left(loai\right)\end{matrix}\right.\) 

\(\Leftrightarrow\dfrac{cos2x+1}{2}=\dfrac{3}{4}\)

\(\Leftrightarrow cos2x=\dfrac{1}{2}\)

\(\Leftrightarrow2x=\pm\dfrac{\pi}{3}+k2\pi\)

\(\Leftrightarrow x=\pm\dfrac{\pi}{6}+k\pi\)

Vậy...

e, \(\sqrt{3}tanx-6cotx+\left(2\sqrt{3}-3\right)=0\) (ĐK: \(x\ne\dfrac{k\pi}{2}\))

\(\Leftrightarrow\sqrt{3}tanx-\dfrac{6}{tanx}+\left(2\sqrt{3}-3\right)=0\)

\(\Leftrightarrow\sqrt{3}tan^2x+\left(2\sqrt{3}-3\right)tanx-6=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=\sqrt{3}\\tanx=-2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+k\pi\left(tm\right)\\x=arctan\left(-2\right)+k\pi\end{matrix}\right.\)

Vậy...

 

Bình luận (0)
HP
25 tháng 6 2021 lúc 8:35

c, \(8cos^2x+2sinx-7=0\)

\(\Leftrightarrow-8sin^2x+2sinx+1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\dfrac{1}{2}\\sinx=-\dfrac{1}{4}\end{matrix}\right.\)

Với \(sinx=\dfrac{1}{2}\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)

Với \(sinx=-\dfrac{1}{4}\Leftrightarrow\left[{}\begin{matrix}x=arcsin\left(-\dfrac{1}{4}\right)+k2\pi\\x=\pi-arcsin\left(-\dfrac{1}{4}\right)+k2\pi\end{matrix}\right.\)

d, \(4cos^4x+cos^2x-3=0\)

\(\Leftrightarrow\left(4cos^2x-3\right)\left(cos^2x+1\right)=0\)

\(\Leftrightarrow4cos^2x-3=0\left(\text{Vì }cos^2x+1>0\right)\)

\(\Leftrightarrow cos^2x=\dfrac{3}{4}\)

\(\Leftrightarrow cosx=\pm\dfrac{\sqrt{3}}{2}\)

Với \(cosx=\dfrac{\sqrt{3}}{2}\Leftrightarrow x=\pm\dfrac{\pi}{3}+k2\pi\)

Với \(cosx=-\dfrac{\sqrt{3}}{2}\Leftrightarrow x=\pm\dfrac{5\pi}{6}+k2\pi\)

Bình luận (0)
LG
Xem chi tiết
NT
30 tháng 8 2021 lúc 19:06

a: Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)

\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)

\(\Leftrightarrow3\sqrt{x+5}=6\)

\(\Leftrightarrow x+5=4\)

hay x=-1

b: Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)

\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)

\(\Leftrightarrow\sqrt{x-1}=17\)

\(\Leftrightarrow x-1=289\)

hay x=290

Bình luận (0)
CK
Xem chi tiết
VK
Xem chi tiết
NL
12 tháng 11 2019 lúc 3:44

a/ ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}\sqrt{1-x}=a\ge0\\\sqrt{1+x}=b\ge0\end{matrix}\right.\) được hệ:

\(\left\{{}\begin{matrix}\sqrt{1+ab}\left(a^3-b^3\right)=2+ab\\a^2+b^2=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{1+ab}\left(a-b\right)\left(a^2+ab+b^2\right)=a^2+b^2+ab\\a^2+b^2=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{1+ab}\left(a-b\right)=1\\a^2+b^2=2\end{matrix}\right.\) \(\left(a\ge b\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(1+ab\right)\left(a-b\right)^2=1\\a^2+b^2=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(1+ab\right)\left(2-2ab\right)=1\\a^2+b^2=2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}1-a^2b^2=\frac{1}{2}\\a^2+b^2=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a^2b^2=\frac{1}{2}\\a^2+b^2=2\end{matrix}\right.\)

Theo Viet đảo, \(a^2;b^2\) là nghiệm của:

\(t^2-2t+\frac{1}{2}=0\Rightarrow\left[{}\begin{matrix}t=\frac{2+\sqrt{2}}{2}\\t=\frac{2-\sqrt{2}}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}1-x=\frac{2+\sqrt{2}}{2}\\1-x=\frac{2-\sqrt{2}}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-\frac{\sqrt{2}}{2}\\x=\frac{\sqrt{2}}{2}\end{matrix}\right.\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
12 tháng 11 2019 lúc 4:10

2 phần còn lại ko biết giải theo kiểu lớp 10, chỉ biết lượng giác hóa, bạn tham khảo thôi :(

b/ Đặt \(x=cos2t\) pt trở thành:

\(\sqrt{1-cos2t}-2cos2t.\sqrt{1-cos^22t}-\left(2cos^22t-1\right)=0\)

\(\Leftrightarrow\sqrt{2}sint-2sin2t.cos2t-cos4t=0\)

\(\Leftrightarrow\sqrt{2}sint-sin4t-cos4t=0\)

\(\Leftrightarrow\sqrt{2}sint=sin4t+cos4t=\sqrt{2}sin\left(4t+\frac{\pi}{4}\right)\)

\(\Leftrightarrow sin\left(4t+\frac{\pi}{4}\right)=sint\)

\(\Leftrightarrow\left[{}\begin{matrix}4t+\frac{\pi}{4}=t+k2\pi\\4t+\frac{\pi}{4}=\pi-t+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}t=-\frac{\pi}{12}+\frac{k2\pi}{3}\\t=-\frac{\pi}{20}+\frac{k2\pi}{5}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=cos\left(-\frac{\pi}{6}+\frac{k4\pi}{3}\right)\\x=cos\left(-\frac{\pi}{10}+\frac{k4\pi}{5}\right)\end{matrix}\right.\) với \(k\in Z\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
12 tháng 11 2019 lúc 4:29

c/ Đặt \(x=cost\)

\(64cos^6t-112cos^4t+56cos^2t-7=2\sqrt{1-cos^2t}\)

\(\Leftrightarrow64cos^6t-112cos^4t+56cos^2t-7=2sint\)

Nhận thấy \(cost=0\) không phải nghiệm, pt tương đương:

\(64cos^7t-112cos^5t+56cos^3t-7cost=2sint.cost\)

\(\Leftrightarrow cos7t=sin2t=cos\left(\frac{\pi}{2}-2t\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}7t=\frac{\pi}{2}-2t+k2\pi\\7t=2t-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}t=\frac{\pi}{18}+\frac{k2\pi}{9}\\t=-\frac{\pi}{10}+\frac{k2\pi}{5}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=cos\left(\frac{\pi}{18}+\frac{k2\pi}{9}\right)\\x=\left(-\frac{\pi}{10}+\frac{k2\pi}{5}\right)\end{matrix}\right.\)

Ý tưởng của người ra đề khá kì quặc, công thức \(cos7a\) kia thực sự là chứng minh rất mất thời gian

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
TH
6 tháng 10 2023 lúc 22:30

a)√x2−9 - 3√x−3 =0

<=> (√x-3)(√x+3)-3√x-3=0

<=> (√x-3)(√x+3-3)=0

<=> (√x-3)√x=0

<=> √x-3=0

<=>x=9

b)√4x2−12x+9=x - 3

<=> √(2x -3)=x-3

<=> 2x-3=x-3

<=>2x-x=-3+3

<=>x=0

c)√x2+6x+9=3x-1

<=> √(x+3)=3x-1

<=> x+3=3x-1

<=> -2x=-4

<=>  x=2

Nhớ cho mình 1 tim nha bạn

Bình luận (1)
AH
7 tháng 10 2023 lúc 19:11

Lời giải:

a. ĐKXĐ: $x\geq 3$

PT $\Leftrightarrow \sqrt{(x-3)(x+3)}-3\sqrt{x-3}=0$

$\Leftrightarrow \sqrt{x-3}(\sqrt{x+3}-3)=0$

$\Leftrightarrow \sqrt{x-3}=0$ hoặc $\sqrt{x+3}-3=0$

$\Leftrightarrow \sqrt{x-3}=0$ hoặc $\sqrt{x+3}=3$

$\Leftrightarrow x=3$ hoặc $x=6$ (tm)

b.

PT \(\Rightarrow \left\{\begin{matrix} x-3\geq 0\\ 4x^2-12x+9=(x-3)^2=x^2-6x+9\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 3\\ 3x^2-6x=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq 3\\ 3x(x-2)=0\end{matrix}\right.\)

$\Rightarrow$ không có giá trị $x$ nào thỏa mãn 

Vậy pt vô nghiệm.

c.

PT \(\Rightarrow \left\{\begin{matrix} 3x-1\geq 0\\ x^2+6x+9=(3x-1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{3}\\ x^2+6x+9=9x^2-6x+1\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{3}\\ 8x^2-12x-8=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{3}\\ 4(x-2)(2x+1)=0\end{matrix}\right.\Leftrightarrow x=2\)

Bình luận (0)
KN
Xem chi tiết
NS
Xem chi tiết
NT
5 tháng 2 2022 lúc 21:36

a: \(=6+2\sqrt{11}-4+\sqrt{11}=2+3\sqrt{11}\)

b: \(=\dfrac{3x+9\sqrt{x}-2x+4\sqrt{x}}{\left(\sqrt{x}+3\right)\left(x-2\sqrt{x}\right)}\cdot\dfrac{\left(\sqrt{x}+3\right)^2}{\sqrt{x}+13}=\dfrac{\sqrt{x}+3}{x-2\sqrt{x}}\)

Bình luận (1)
NT
Xem chi tiết
LH
23 tháng 6 2021 lúc 12:58

a) Áp dụng bđt AM-GM có:

\(\sqrt[3]{\left(9-x\right).8.8}\le\dfrac{9-x+8+8}{3}=\dfrac{25-x}{3}\)\(\Leftrightarrow\sqrt[3]{9-x}\le\dfrac{25-x}{12}\)

\(\sqrt[3]{\left(7+x\right).8.8}\le\dfrac{7+x+8+8}{3}=\dfrac{23+x}{3}\)\(\Leftrightarrow\sqrt[3]{7+x}\le\dfrac{23+x}{12}\)

Cộng vế với vế \(\Rightarrow\sqrt[3]{9-x}+\sqrt[3]{7+x}\le4\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}9-x=8\\7+x=8\end{matrix}\right.\)\(\Rightarrow x=1\)

Vậy...

b)Đk:\(x\ge2\)

Pt \(\Leftrightarrow\left(x-1\right)^2.\left(x^2-4\right)=\left(x-2\right)^2.\left(x^2-1\right)\)

\(\Leftrightarrow\left(x-1\right)^2\left(x-2\right)\left(x+2\right)=\left(x-2\right)^2\left(x+1\right)\left(x-1\right)\)

Do \(x\ge2\Rightarrow x-1>0\)

Chia cả hai vế của pt cho x-1 ta được:

\(\left(x-1\right)\left(x-2\right)\left(x+2\right)=\left(x-2\right)^2\left(x+1\right)\)

\(\Leftrightarrow\left(x-2\right)\left[\left(x-1\right)\left(x+2\right)-\left(x-2\right)\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2+x-2-x^2+3x-2\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(4x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=1\left(ktm\right)\end{matrix}\right.\)

Vậy S={2}

c)Đk:\(\left\{{}\begin{matrix}9-x^2\ge0\\x^2-1\ge0\\x-3\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}-3\le x\le3\\\left[{}\begin{matrix}x\ge1\\x\le-1\end{matrix}\right.\\x\ge3\end{matrix}\right.\)\(\Rightarrow x=3\)

Thay x=3 vào pt thấy thỏa mãn

Vậy S={3}

Bình luận (1)
TV
Xem chi tiết
MC
15 tháng 5 2018 lúc 15:38

a) \(\sqrt{x+3}-\sqrt{x-1}=\sqrt{2x+2}\)

Điều kiện: \(\hept{\begin{cases}x+3\ge0\\x-1\ge0\\2x+2\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge-3\\x\ge1\\x\ge-1\end{cases}\Leftrightarrow x\ge1}\)

    \(\Leftrightarrow\left(\sqrt{x+3}-\sqrt{x-1}\right)^2=\left(\sqrt{2x+2}\right)^2\)

     \(\Leftrightarrow x+3-2\sqrt{\left(x+3\right)\left(x-1\right)}+x-1=2x+2\)

     \(\Leftrightarrow2x+2-2\sqrt{\left(x+3\right)\left(x-1\right)}=2x+2\)

     \(\Leftrightarrow-2\sqrt{\left(x+3\right)\left(x-1\right)}=0\)

     \(\Leftrightarrow\left(x+3\right)\left(x-1\right)=0\)

      \(\Leftrightarrow\orbr{\begin{cases}x+3=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\left(l\right)\\x=1\left(n\right)\end{cases}}\)

Vậy \(S=\left\{1\right\}\)

     

Bình luận (0)