Những câu hỏi liên quan
TT
Xem chi tiết
NT
14 tháng 4 2022 lúc 14:39

Bài 1.

\(\left\{{}\begin{matrix}x-3y=5-2m\\2x+y=3\left(m+1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3y=5-2m\\6x+3y=9m+9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7x=7m+14\\x-3y=5-2m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\m+2-3y=5-2m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\-3y=-3m+3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\y=m-1\end{matrix}\right.\)

\(x_0^2+y_0^2=9m\)

\(\Leftrightarrow\left(m+2\right)^2+\left(m-1\right)^2=9m\)

\(\Leftrightarrow m^2+4m+4+m^2-2m+1-9m=0\)

\(\Leftrightarrow2m^2-7m+5=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=1\\m=\dfrac{5}{2}\end{matrix}\right.\) ( Vi-ét )

Bình luận (0)
NK
Xem chi tiết
NT
12 tháng 6 2023 lúc 22:16

a:

Để hệ có nghiệm duy nhất thì m/2<>-2/-m

=>m^2<>4

=>m<>2 và m<>-2

 

 

Bình luận (0)
H24
Xem chi tiết
NT
14 tháng 1 2024 lúc 20:41

Để hệ có nghiệm duy nhất thì \(\dfrac{1}{m}\ne\dfrac{m}{4}\)

=>\(m^2\ne4\)

=>\(m\notin\left\{2;-2\right\}\)

Ta có: \(\left\{{}\begin{matrix}x+my=1\\mx+4y=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=1-my\\m\left(1-my\right)+4y=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=1-my\\m-m^2\cdot y+4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1-my\\y\left(-m^2+4\right)=2-m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=1-my\\y=\dfrac{-\left(m-2\right)}{-\left(m^2-4\right)}=\dfrac{1}{m+2}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{1}{m+2}\\x=1-\dfrac{m}{m+2}=\dfrac{m+2-m}{m+2}=\dfrac{2}{m+2}\end{matrix}\right.\)

x+y>-5

=>\(\dfrac{2}{m+2}+\dfrac{1}{m+2}>-5\)

=>\(\dfrac{3}{m+2}+5>0\)

=>\(\dfrac{3+5m+10}{m+2}>0\)

=>\(\dfrac{5m+13}{m+2}>0\)

TH1: \(\left\{{}\begin{matrix}5m+13>0\\m+2>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>-\dfrac{13}{5}\\m>-2\end{matrix}\right.\)

=>\(m>-2\)

TH2: \(\left\{{}\begin{matrix}5m+13< 0\\m+2< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m< -\dfrac{13}{5}\\m< -2\end{matrix}\right.\)

=>\(m< -\dfrac{13}{5}\)

Vậy: \(\left[{}\begin{matrix}m< -\dfrac{13}{5}\\\left\{{}\begin{matrix}m>-2\\m\ne2\end{matrix}\right.\end{matrix}\right.\)

Bình luận (0)
H24
Xem chi tiết
NT
8 tháng 1 2024 lúc 8:21

1: Để hệ có nghiệm duy nhất thì \(\dfrac{m}{m-1}\ne\dfrac{1}{-1}\ne-1\)

=>\(\dfrac{m+m-1}{m-1}\ne0\)

=>\(\dfrac{2m-1}{m-1}\ne0\)

=>\(m\notin\left\{\dfrac{1}{2};1\right\}\)(1)

\(\left\{{}\begin{matrix}mx+y=3\\\left(m-1\right)x-y=7\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}mx+\left(m-1\right)x=3+7\\mx+y=3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x\left(2m-1\right)=10\\mx+y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{10}{2m-1}\\y=3-mx=3-\dfrac{10m}{2m-1}=\dfrac{6m-3-10m}{2m-1}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{10}{2m-1}\\y=\dfrac{-4m-3}{2m-1}\end{matrix}\right.\)

Để x và y trái dấu thì x*y<0

=>\(\dfrac{10}{2m-1}\cdot\dfrac{-4m-3}{2m-1}< 0\)

=>\(\dfrac{10\left(4m+3\right)}{\left(2m-1\right)^2}>0\)

=>4m+3>0

=>m>-3/4

Kết hợp (1), ta được: \(\left\{{}\begin{matrix}m>-\dfrac{3}{4}\\m\notin\left\{\dfrac{1}{2};1\right\}\end{matrix}\right.\)

2: Để x,y là số nguyên thì \(\left\{{}\begin{matrix}10⋮2m-1\\-4m-3⋮2m-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2m-1\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\\-4m+2-5⋮2m-1\end{matrix}\right.\)

=>\(2m-1\in\left\{1;-1;5;-5\right\}\)

=>\(2m\in\left\{2;0;6;-4\right\}\)

=>\(m\in\left\{1;0;3;-2\right\}\)

Kết hợp (1), ta được: \(m\in\left\{0;3;-2\right\}\)

Bình luận (0)
H24
Xem chi tiết
AH
13 tháng 1 2024 lúc 13:15

Lời giải:

$x+my=2\Rightarrow x=2-my$. Thay vào PT(2):

$m(2-my)-2y=1$

$\Leftrightarrow 2m-y(m^2+2)=1$

$\Leftrightarrow y=\frac{2m-1}{m^2+2}$

$x=2-my=2-\frac{2m^2-m}{m^2+2}=\frac{m+4}{m^2+2}$

Vậy hpt có nghiệm $(x,y)=(\frac{m+4}{m^2+2}; \frac{2m-1}{m^2+2})$

Để $x<0; y>0$

$\Leftrightarrow \frac{m+4}{m^2+2}<0$ và $\frac{2m-1}{m^2+2}>0$

$\Leftrightarrow m+4<0$ và $2m-1>0$ (do $m^2+2>0$)

$\Leftrightarrow m< -4$ và $m> \frac{1}{2}$  (vô lý)

Do đó không tồn tại $m$ thỏa mãn đề.

Bình luận (0)
H24
Xem chi tiết
NL
13 tháng 1 2024 lúc 21:39

Hệ có nghiệm duy nhất khi: \(\dfrac{1}{m}\ne\dfrac{m}{-2}\Rightarrow m^2\ne-2\) (luôn đúng)

\(\Rightarrow\) Hệ luôn có nghiệm duy nhất với mọi m

Khi đó: \(\left\{{}\begin{matrix}x+my=2\\mx-2y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x+2my=4\\m^2x-2my=m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2+2\right)x=m+4\\y=\dfrac{mx-1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m+4}{m^2+2}\\y=\dfrac{4m-2}{2\left(m^2+2\right)}\end{matrix}\right.\)

Nghiệm hệ thỏa mãn x<0, y<0 \(\Rightarrow\left\{{}\begin{matrix}\dfrac{m+4}{m^2+2}< 0\\\dfrac{4m-2}{2\left(m^2+2\right)}< 0\end{matrix}\right.\) (1)

Do \(m^2+2>0;\forall m\) nên (1) tương đương:

\(\left\{{}\begin{matrix}m+4< 0\\4m-2< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m< -4\\m< \dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow m< -4\)

Bình luận (0)
NK
Xem chi tiết
NH
Xem chi tiết
NT
21 tháng 5 2020 lúc 17:02

\(\begin{cases} x+my=m+1 \\ mx+y-3m-1 \end{cases}\) (1)

a) Giải HPT khi m = 1

Thay m=1 vào hệ phương trình (1) , ta có :

\(\begin{cases} x+my=m+1 \\ mx+y-3m-1 \end{cases}\)<=> \(\begin{cases} x+y=1+1 \\ x+y-3=1 \end{cases}\) <=> \(\begin{cases} x+y=2 \\ x+y=4 \end{cases}\) <=> \(\begin{cases} 0x=-2 \\ x+y=2 \end{cases}\) => phương trình vô nghiệm

Vậy phương trình (1) vô nghiệm

Bình luận (0)
H24
Xem chi tiết
H24
11 tháng 5 2021 lúc 15:00

`x+my=m+1=>x=m+1-my` thế vào dưới

`=>m(m+1-my)+y-3m+1=0`

`<=>m^2+m-my^2+y-3m-1`

`=>y(1-m^2)=2m-1-m^2`

Hệ có no duy nhất

`=>1-m^2 ne 0=>m ne +-1`

`=>y=(-1+2m-m^2)/(1-m^2)=(m-1)/(m+1)`

`=>x=m+1-my=((m+1)^2-m(m-1))/(m+1)=(3m+1)/(m+1)`

`=>xy=((3m+1)(m-1))/(m+1)^2=(3m^2-2m-1)/(m+1)^2`

Xét `xy+1`

`=(3m^2-2m-1+m^2+2m+1)/(m+1)^2=(4m^2)/(m+1)^2`

`=>xy+1>=0=>xy>=-1`

Dấu "=" xảy ra khi `m=0`

Bình luận (0)