Những câu hỏi liên quan
NH
Xem chi tiết
LQ
26 tháng 7 2019 lúc 21:35

Do \(\Delta=5^2+4\cdot3\cdot4=25+48=73>0\) nên PT có 2 nghiệm phân biệt.

Khi đó: \(\left\{{}\begin{matrix}x_1+x_2=\frac{-b}{a}=\frac{-\left(-5\right)}{3}=\frac{5}{3}\\x_1x_2=\frac{c}{a}=\frac{-4}{3}\end{matrix}\right.\)

Từ đây, ta suy ra:

\(A=x_1^3x_2+x_1x_2^3\\ =x_1x_2\left(x_1^2+x^2_2\right)\\ =x_1x_2\left(x_1^2+2x_1x_2+x^2_2-2x_1x_2\right)\\ =x_1x_2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]\\ =\frac{-4}{3}\cdot\left[\left(\frac{5}{3}\right)^2-\frac{-4\cdot2}{3}\right]\\ =\frac{-4}{3}\cdot\frac{25-\left(-8\cdot3\right)}{9}\\ =\frac{-4}{3}\cdot\frac{25+24}{9}\\ =\frac{-4}{3}\cdot\frac{49}{9}=\frac{-196}{27}\)

Chúc bạn học tốt nhaok.

Bình luận (1)
TH
26 tháng 7 2019 lúc 21:40

Ta có:

A = x1x2(x12 + x22) = x1x2[(x1 + x2)2 - 2x1x2]

Ta có: \(\Delta=\left(-5\right)^2-4.3.\left(-4\right)=25+48>0\)

Áp dụng định lý Vi-ét với phương trình 3x2 - 5x - 4 ta có:
x1 + x2 = \(\frac{-\left(-5\right)}{3}=\frac{5}{3}\)
x1x2 = \(\frac{-4}{3}\)

Thay vào A ta được:

A = \(\frac{-4}{3}\left[\left(\frac{5}{3}\right)^2-2.\frac{-4}{3}\right]=\frac{-4}{3}.\left(\frac{25}{9}+\frac{8}{3}\right)=\frac{-4}{3}.\frac{49}{3}=\frac{-196}{3}\)

(P/s: CÓ thể SAI)

Bình luận (0)
NL
Xem chi tiết
H24
14 tháng 5 2020 lúc 17:11
https://i.imgur.com/QSvCLv5.jpg
Bình luận (0)
LM
Xem chi tiết
NL
21 tháng 2 2019 lúc 19:18

Từ pt trên ta có: \(x^2+y=\left(3-y\right)x\) (1)

Biến đổi pt dưới:

\(x^4+2x^2y+y^2+x^2y-5x^2=0\Leftrightarrow\left(x^2+y\right)^2=\left(5-y\right)x^2\) (2)

Thế (1) vào (2) ta được:

\(\left(3-y\right)^2x^2=\left(5-y\right)x^2\Leftrightarrow x^2\left(y^2-5y+4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\y=1\\y=4\end{matrix}\right.\)

Với \(x=0\) thay vào pt đầu \(\Rightarrow y=0\)

Với \(y=1\) thay vào pt đầu: \(x^2-2x+1=0\Rightarrow x=1\)

Với \(y=4\) thay vào pt đầu \(x^2+x+4=0\) (vô nghiệm)

Vậy hệ đã cho có 2 cặp nghiệm \(\left(x;y\right)=\left(0;0\right);\left(1;1\right)\)

Bình luận (0)
H24
Xem chi tiết
NT
3 tháng 3 2022 lúc 9:13

\(\Leftrightarrow\left\{{}\begin{matrix}x\cdot\dfrac{5}{2}=-1\\x-y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{5}\\y=x+1=-\dfrac{2}{5}+1=\dfrac{3}{5}\end{matrix}\right.\)

Bình luận (0)
NT
3 tháng 3 2022 lúc 9:15

\(\left\{{}\begin{matrix}\dfrac{3}{2}x+y=0\\x-y=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{2}x=-1\\x-y=-1\end{matrix}\right.\)  ( cộng đại số nhé pạn )

\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{5}\\-\dfrac{2}{5}-y=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{5}\\y=\dfrac{3}{5}\end{matrix}\right.\)

Bình luận (1)
XC
Xem chi tiết
NT
Xem chi tiết
LL
7 tháng 10 2021 lúc 17:44

9) \(\left\{{}\begin{matrix}\dfrac{7}{2x+y}+\dfrac{4}{2x-y}=74\\\dfrac{3}{2x+y}+\dfrac{2}{2x-y}=32\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{21}{2x+y}+\dfrac{12}{2x-y}=222\\\dfrac{21}{2x+y}+\dfrac{14}{2x-y}=224\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{2x-y}=2\\\dfrac{7}{2x+y}+\dfrac{4}{2x-y}=74\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x+y=\dfrac{1}{10}\\2x-y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-2y=\dfrac{9}{10}\\2x+y=\dfrac{1}{10}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{9}{20}\\x=\dfrac{11}{40}\end{matrix}\right.\)

10) \(\left\{{}\begin{matrix}x=2y-1\\2x-y=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x-4y=-2\\2x-y=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2y-1\\3y=7\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{11}{3}\\y=\dfrac{7}{3}\end{matrix}\right.\)

11) \(\left\{{}\begin{matrix}3x-6=0\\2y-x=4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3x=6\\y=\dfrac{x+4}{2}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)

12) \(\left\{{}\begin{matrix}2x+y=5\\x+7y=9\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x+y=5\\2x+14y=18\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+y=5\\13y=13\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

Bình luận (0)
LL
7 tháng 10 2021 lúc 17:52

13) \(\left\{{}\begin{matrix}\dfrac{3}{x}-\dfrac{4}{y}=2\\\dfrac{4}{x}-\dfrac{5}{y}=3\end{matrix}\right.\)(ĐKXĐ: \(x,y\ne0\))

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{12}{x}-\dfrac{16}{y}=8\\\dfrac{12}{x}-\dfrac{15}{y}=9\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x}-\dfrac{4}{y}=2\\\dfrac{1}{y}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\left(tm\right)\\y=1\left(tm\right)\end{matrix}\right.\)

14) \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{8}{x}+\dfrac{15}{y}=1\end{matrix}\right.\)(ĐKXĐ: \(x,y\ne0\))

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{8}{x}+\dfrac{8}{y}=\dfrac{2}{3}\\\dfrac{8}{x}+\dfrac{15}{y}=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{7}{y}=\dfrac{1}{3}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=28\left(tm\right)\\y=21\left(tm\right)\end{matrix}\right.\)

15) \(\left\{{}\begin{matrix}2\sqrt{x-1}-\sqrt{y-1}=1\\\sqrt{x-1}+\sqrt{y-1}=2\end{matrix}\right.\)(ĐKXĐ: \(x\ge1,y\ge1\))

\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-1}=3\\\sqrt{x-1}+\sqrt{y-1}=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{y-1}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\y-1=1\end{matrix}\right.\)\(\Leftrightarrow x=y=2\left(tm\right)\)

Bình luận (0)
NT
Xem chi tiết
TN
Xem chi tiết
DH
16 tháng 4 2021 lúc 17:41

1) \(\left\{{}\begin{matrix}2x+y=10\\5x-3y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}10x+5y=50\\10x-6y=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}11y=44\\2x+y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=4\\x=3\end{matrix}\right.\)

Vậy hpt có nghiệm (x;y) = (3;4)

2)

a) 3x2 - 2x - 1 = 0

\(\Leftrightarrow3x^2-3x+x-1=0\)

\(\Leftrightarrow3x\left(x-1\right)+\left(x-1\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=1\end{matrix}\right.\)

Vậy pt có nghiệm x = 1 hoặc x = 3

b) Đặt x2 = t (t \(\ge\) 0)

Pt trở thành: t2 - 20t + 4 = 0

\(\Delta\) = (-20)2 - 4.1.4 = 400 - 16 = 384

=> pt có 2 nghiệm phân biệt t1 = \(\dfrac{20+8\sqrt{6}}{2}=10+4\sqrt{6}\)

t2 = \(\dfrac{20-8\sqrt{6}}{2}=10-4\sqrt{6}\)

=> x1 = \(\sqrt{10+4\sqrt{6}}=\sqrt{\left(2+\sqrt{6}\right)^2}=2+\sqrt{6}\)

x2 = \(2-\sqrt{6}\)

Bình luận (0)
TH
Xem chi tiết
NL
Xem chi tiết
NT
9 tháng 1 2021 lúc 20:37

1) Thay \(m=\sqrt{3}+1\) vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}\left(\sqrt{3}+1-1\right)x-2y=1\\3x+\left(\sqrt{3}+1\right)y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{3}x-2y=1\\3x+\left(\sqrt{3}+1\right)y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x-2\sqrt{3}y=\sqrt{3}\\3x+\left(\sqrt{3}+1\right)y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-2\sqrt{3}y-y\left(\sqrt{3}+1\right)=\sqrt{3}-1\\3x-2\sqrt{3}y=\sqrt{3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-2\sqrt{3}y-\sqrt{3}y-y=\sqrt{3}-1\\3x-2\sqrt{3}y=\sqrt{3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y\left(-3\sqrt{3}-1\right)=\sqrt{3}-1\\3x-2\sqrt{3}y=\sqrt{3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-\sqrt{3}+1}{3\sqrt{3}+1}\\3x-2\sqrt{3}\cdot\dfrac{-\sqrt{3}+1}{3\sqrt{3}+1}=\sqrt{3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-5+2\sqrt{3}}{13}\\3x=\sqrt{3}-\dfrac{12+10\sqrt{3}}{13}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-5+2\sqrt{3}}{13}\\x=\left(\dfrac{13\sqrt{3}-12-10\sqrt{3}}{13}\right)\cdot\dfrac{1}{3}=\dfrac{3\sqrt{3}-12}{13}\cdot\dfrac{1}{3}=\dfrac{\sqrt{3}-4}{13}\end{matrix}\right.\)

Vậy: Khi \(m=\sqrt{3}+1\) thì hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=\dfrac{\sqrt{3}-4}{13}\\y=\dfrac{-5+2\sqrt{3}}{13}\end{matrix}\right.\)

 

Bình luận (2)