fân tích đt thành nhân tử
A=-6x^3+18x^2+60x
Phân tích các đa thức sau thành nhân tử :
a. a^2-8a+15
b.3x^2-10x-8
c.-6x^3+18x^2+60x
d.2a^2-5ab+2b^2
e.xy^2-xz^2+yz^2-yx^+zx^2-yz^2
\(a^2-8a+15\)
\(=\left(a^2-2.4a+4^2\right)-1^2\)
\(=\left(a-4\right)^2-1^2\)
\(=\left(a-4-1\right)\left(a-4+1\right)\)
\(=\left(a-3\right).\left(a-5\right)\)
\(a^2-8a+15\)
\(=a^2-2.a.4+16-1\)
\(=\left(a-4\right)^2-1\)
\(=\left(a-4-1\right)\left(a-4+1\right)\)
\(=\left(a-5\right)\left(a-3\right)\)
\(3x^2-10x-8\)
\(=3x^2-12x+2x-8\)
\(=3x\left(x-4\right)+2\left(x-4\right)\)
\(=\left(3x+2\right)\left(x-4\right)\)
\(-6x^3+18x^2+60x\)
\(=\)\(-6x^3+30x^2-12x^2+60x\)
\(=-6x^2\left(x-5\right)-12x\left(x-5\right)\)
\(=\)\(\left(-6x^2-12x\right)\left(x-5\right)\)
\(=-6x\left(x+2\right)\left(x-5\right)\)
Bài 5. Phân tích các đa thức thành nhân tử
a) (x2-4x)2-8(x2-4x)+15 b) (x2+2x)2+9x2+18x+20
c) ( x+1)(x+2)(x+3)(x+4)-24 d) (x-y+5)2-2(x-y+5)+1
Bài 6. Phân tích các đa thức thành nhân tử
a) x2y+x2-y-1 b) (x2+x)2+4(x2+x)-12
c) (6x+5)2(3x+2)(x+1)-6
Cưu là mình vs (x^2+x)^2-2(x^2+x)-15
1) Tìm x, y, z
a) 9x2 +y2 + 2z2 – 18x +4z – 6y +20 = 0
b) 5x2 +5y2 +8xy+2y – 2x+2 = 0
c) 5x2 +2y2 + 4xy – 2x + 4y +5 = 0
d) x2 + 4y2 + z2 =2x + 12y – 4z – 14
e) x2 +y2 – 6x + 4y +2= 0
2) Phân tích đa thức thành nhân tử
a) 3xy2 – 3x3 – 6xy +3x
b) 3x2 + 11x + 6
c) –x3 – 4xy2 + 4x2y +16x
d) xz – x2 – yz +2xy – y2
e) 4x2 – y2 – 6x + 3y
f) X4 – x3 – 10x2 + 2x +4
g) (x3 – x2 + x)(121 – 25y2 – 10y) – (x3 – x2 + x) – (121 – 25y2 – 10y) +1
h) X4 – 14x3 + 71x2 – 154x + 120
Giúp mik vs cần gấp!!!
\(a,9x^2+y^2+2z^2-18x+4z-6y+20=0\\ \Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\\z=-1\end{matrix}\right.\)
\(b,5x^2+5y^2+8xy+2y-2x+2=0\\ \Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=-y\\x=1\\y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
\(c,5x^2+2y^2+4xy-2x+4y+5=0\\ \Leftrightarrow\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x=-y\\x=1\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
\(d,x^2+4y^2+z^2=2x+12y-4z-14\\ \Leftrightarrow\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{3}{2}\\z=-2\end{matrix}\right.\)
\(e,x^2+y^2-6x+4y+2=0\\ \Leftrightarrow\left(x-3\right)^2+\left(y+2\right)^2=11\)
Pt vô nghiệm do ko có 2 bình phương số nguyên có tổng là 11
e: Ta có: \(x^2-6x+y^2+4y+2=0\)
\(\Leftrightarrow x^2-6x+9+y^2+4y+4-11=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(y+2\right)^2=11\)
Dấu '=' xảy ra khi x=3 và y=-2
1) Tìm x, y, z
a) 9x2 +y2 + 2z2 – 18x +4z – 6y +20 = 0
b) 5x2 +5y2 +8xy+2y – 2x+2 = 0
c) 5x2 +2y2 + 4xy – 2x + 4y +5 = 0
d) x2 + 4y2 + z2 =2x + 12y – 4z – 14
e) x2 +y2 – 6x + 4y +2= 0
2) Phân tích đa thức thành nhân tử
a) 3xy2 – 3x3 – 6xy +3x
b) 3x2 + 11x + 6
c) –x3 – 4xy2 + 4x2y +16x
d) xz – x2 – yz +2xy – y2
e) 4x2 – y2 – 6x + 3y
f) X4 – x3 – 10x2 + 2x +4
g) (x3 – x2 + x)(121 – 25y2 – 10y) – (x3 – x2 + x) – (121 – 25y2 – 10y) +1
h) X4 – 14x3 + 71x2 – 154x + 120
Giúp mik với mik đang cần rất gấp ạ!!!
phân tích ĐT sau thành nhân tử
a)x^2-2xy+y^2-1
b)9-x^2-2xy-y^2
c)25-x^2+4xy-4y^2
a) \(x^2-2xy+y^2-1=\left(x-y\right)^2-1=\left(x-y-1\right)\left(x-y+1\right)\)
b) \(9-x^2-2xy-y^2=9-\left(x^2+2xy+y^2\right)=9-\left(x+y\right)^2=\left(3-x-y\right)\left(3+x+y\right)\)
c) \(25-x^2+4xy-4y^2=25-\left(x^2-4xy+4y^2\right)=25-\left(x-2y\right)^2=\left(5-x+2y\right)\left(5+x-2y\right)\)
a. x2 - 2xy + y2 - 1
= (x - y)2 - 12
= (x - y - 1)(x - y + 1)
b. 9 - x2 - 2xy - y2
= 32 - (x + y)2
= (3 - x - y)(3 + x + y)
c. 25 - x2 + 4xy - 4y2
= 52 - \(\left[x^2-4xy+\left(2y\right)^2\right]\)
= 52 - (x - 2y)2
= (5 - x + 2y)(5 + x - 2y)
1.PTĐT thành nhân tử
a) \(x^5+4x+5\)
b) \(x^4+6x^3+11x^2+6x+1\)
c) \(64x^4+1\)
c) \(81x^4+4\)
d) \(4\left(x^2+15x+50\right)\left(x^2+18x+72\right)-3x^2\)
e) \(x^5-x^4-1\)
2.PTĐT thành nhân tử (PP hệ số bất định)
a) \(3x^2-22xy-4x+8y+7y^2+1=\left(3x+ay+b\right)\left(x+cy+d\right)\)
b) \(12x^2+5x-12y^2+12y-10xy-3=\left(ã+by-1\right)\left(dx+cy+3\right)\)
a) \(x^5+4x+5=\left(x^5+x^4\right)-\left(x^4+x^3\right)+\left(x^3+x^2\right)-\left(x^2+x\right)+\left(5x+5\right)=x^4\left(x+1\right)-x^3\left(x+1\right)+x^2\left(x+1\right)-x\left(x+1\right)+5\left(x+1\right)=\left(x^4-x^3+x^2-x+5\right)\left(x+1\right)\)
b) \(x^4+6x^3+11x^2+6x+1=\left(x^4+3x^3+x^2\right)+\left(3x^3+9x^2+3x\right)+\left(x^2+3x+1\right)=x^2\left(x^2+3x+1\right)+3x\left(x^2+3x+1\right)+\left(x^2+3x+1\right)=\left(x^2+3x+1\right)^2\)
c) \(64x^4+1=\left[\left(8x^2\right)^2+16x^2+1\right]-16x^2=\left(8x^2+1\right)^2-\left(4x\right)^2=\left(8x^2-4x+1\right)\left(8x^2+4x+1\right)\)d) \(81x^4+4=\left[\left(9x^2\right)^2+36x^2+2^2\right]-36x^2=\left(9x^2+2\right)^2-\left(6x\right)^2=\left(9x^2-6x+2\right)\left(9x^2+6x+2\right)\)
Câu 1:
\(e,x^5-x^4-1=x^5-x^4+x^3-x^3+x^2-x^2+x-x-1\\ =\left(x^5-x^4-x^3\right)+\left(x^3-x^2-x\right)+\left(x^2-x-1\right)\\ =x^3\left(x^2-x-1\right)+x\left(x^2-x-1\right)+\left(x^2-x-1\right)\\ =\left(x^2-x-1\right)\left(x^3+x+1\right)\)
Câu 2:
\(a,\left(3x+ay+b\right)\left(x+cy+d\right)\\ =3x^2+3xcy+3xd+axy+acy^2+ayd+bx+bcy+bd\\ =3x^2+xy\left(3c+a\right)+x\left(b+3d\right)+y\left(ad+bc\right)+acy^2+bd\\ \Leftrightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}3c+a=-22\\b+3d=-4\end{matrix}\right.\\ad+bc=8\\\left\{{}\begin{matrix}ac=7\\bd=1\end{matrix}\right.\end{matrix}\right.\)
Xét \(bd=1\Leftrightarrow\left[{}\begin{matrix}b=1;d=1\\b=-1;d=-1\end{matrix}\right.\)
Với \(b=1;d=1\Leftrightarrow b+3d=1+3\cdot1=4\left(ktm\right)\)
Với \(b=-1;d=-1\Leftrightarrow b+3d=-1-3=-4\left(tm\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}3c+a=-22\\-a-c=8\\ac=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-1\\c=-7\end{matrix}\right.\)
Vậy \(3x^2-22xy-4x+8y+7y^2+1=\left(3x-y-1\right)\left(x-7y-1\right)\)
Cái chỗ ngoặc nhọn mà 5 dòng á a ko thấy trong cái phần công thức nên là ghi z chứ nó có 5 dòng đó nha
câu b tương tự, lười wa 😴
phân tích các đa thức sau thành nhân tử
a) 8x^3 - 1/125y^3
b) -x^3 + 6x^2y - 12xy^2 + 8y^3
a
\(8x^3-\dfrac{1}{125}y^3\\ =\left(2x\right)^3-\left(\dfrac{1}{5}y\right)^3\\ =\left(2x-\dfrac{1}{5}y\right)\left[\left(2x\right)^2+2x.\dfrac{1}{5}y+\left(\dfrac{1}{5}y\right)^2\right]\\ =\left(2x-\dfrac{1}{5}y\right)\left(4x^2+\dfrac{2}{5}xy+\dfrac{1}{25}y^2\right)\)
b
\(-x^3+6x^2y-12xy^2+8y^3\\ =-\left(x^3-6x^2y+12xy^2-8y^3\right)\\ =-\left(x^3-3.2y.x^2+3.\left(2y\right)^2.x-\left(2y\right)^3\right)\\ =-\left(x-2y\right)^3\\ =-\left(x-2y\right)\left(x-2y\right)\left(x-2y\right)\)
a: 8x^3-1/125y^3
=(2x)^3-(1/5y)^3
=(2x-1/5y)(4x^2+2/5xy+1/25y^2)
b: =(2y-x)^3
a) \(8x^3-\dfrac{1}{125}y^3\)
\(=\left(2x\right)^3-\left(\dfrac{1}{5}y\right)^3\)
\(=\left(2x-\dfrac{1}{5}y\right)\left[\left(2x\right)^2+2x\cdot\dfrac{1}{5}y+\left(\dfrac{1}{5}y\right)^2\right]\)
\(=\left(2x-\dfrac{1}{5}y\right)\left(4x^2+\dfrac{2}{5}xy+\dfrac{1}{24}y^2\right)\)
b) \(-x^3+6x^2y-12xy^2+8y^3\)
\(=-\left(x^3-6x^2y+12xy^2-8y^2\right)\)
\(=-\left(x^3-3\cdot x^2\cdot2y+3\cdot x\cdot\left(2y\right)^2-\left(2y\right)^3\right)\)
\(=-\left(x-2y\right)^3\)
2/phân tích đa thức thành nhân tử
a/ 4x(x-1)-6x+6
3/tìm x
a/6x^2 -24x =0
2.
a) 4x(x-1)-6x+6
= 4x(x-1)-6(x-1)
= (4x-6)(x-1)
3.
a) 6x2-24x=0
6x(x-4)=0
TH1: 6x=0 TH2: x-4=0
x=0 x=4
Vậy x\(\in\){0;4}
2. a. \(4x\left(x-1\right)-6x+6\)
\(=4x\left(x-1\right)-6\left(x-1\right)\)
\(=\left(4x-6\right)\left(x-1\right)\)
3. a. \(6x^2-24x=0\)
\(\Leftrightarrow6x\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}6x=0\\x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
Bài 3:
a: \(\Leftrightarrow6x\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
Bài 1: Phân tích đa thức thành nhân tử
a) (6x+3)-(2x-5)(2x+1)
= 3.(2x+1)-(2x-5)(2x+1)
= (2x+1)(3-2x+5)
=(2x+1)(8-2x)