Những câu hỏi liên quan
TT
Xem chi tiết
KS
21 tháng 7 2018 lúc 9:50

\(a^2-8a+15\)

\(=\left(a^2-2.4a+4^2\right)-1^2\)

\(=\left(a-4\right)^2-1^2\)

\(=\left(a-4-1\right)\left(a-4+1\right)\)

\(=\left(a-3\right).\left(a-5\right)\)

Bình luận (0)
TN
21 tháng 7 2018 lúc 9:46

\(a^2-8a+15\)

\(=a^2-2.a.4+16-1\)

\(=\left(a-4\right)^2-1\)

\(=\left(a-4-1\right)\left(a-4+1\right)\)

\(=\left(a-5\right)\left(a-3\right)\)

\(3x^2-10x-8\)

\(=3x^2-12x+2x-8\)

\(=3x\left(x-4\right)+2\left(x-4\right)\)

\(=\left(3x+2\right)\left(x-4\right)\)

\(-6x^3+18x^2+60x\)

\(=\)\(-6x^3+30x^2-12x^2+60x\)

\(=-6x^2\left(x-5\right)-12x\left(x-5\right)\)

\(=\)\(\left(-6x^2-12x\right)\left(x-5\right)\)

\(=-6x\left(x+2\right)\left(x-5\right)\)

Bình luận (0)
TT
21 tháng 7 2018 lúc 10:08

câu d + câu e vs ạ @@ :v 

Bình luận (0)
DH
Xem chi tiết
PT
19 tháng 11 2024 lúc 20:48

Cưu là mình vs (x^2+x)^2-2(x^2+x)-15

Bình luận (0)
HN
Xem chi tiết
NM
5 tháng 9 2021 lúc 13:52

\(a,9x^2+y^2+2z^2-18x+4z-6y+20=0\\ \Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\\z=-1\end{matrix}\right.\)

\(b,5x^2+5y^2+8xy+2y-2x+2=0\\ \Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=-y\\x=1\\y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

\(c,5x^2+2y^2+4xy-2x+4y+5=0\\ \Leftrightarrow\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x=-y\\x=1\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

\(d,x^2+4y^2+z^2=2x+12y-4z-14\\ \Leftrightarrow\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{3}{2}\\z=-2\end{matrix}\right.\)

\(e,x^2+y^2-6x+4y+2=0\\ \Leftrightarrow\left(x-3\right)^2+\left(y+2\right)^2=11\)

Pt vô nghiệm do ko có 2 bình phương số nguyên có tổng là 11

 

 

Bình luận (0)
NT
5 tháng 9 2021 lúc 14:10

e: Ta có: \(x^2-6x+y^2+4y+2=0\)

\(\Leftrightarrow x^2-6x+9+y^2+4y+4-11=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(y+2\right)^2=11\)

Dấu '=' xảy ra khi x=3 và y=-2

Bình luận (0)
HN
Xem chi tiết
AC
Xem chi tiết
LL
15 tháng 9 2021 lúc 12:16

a) \(x^2-2xy+y^2-1=\left(x-y\right)^2-1=\left(x-y-1\right)\left(x-y+1\right)\)

b) \(9-x^2-2xy-y^2=9-\left(x^2+2xy+y^2\right)=9-\left(x+y\right)^2=\left(3-x-y\right)\left(3+x+y\right)\)

c) \(25-x^2+4xy-4y^2=25-\left(x^2-4xy+4y^2\right)=25-\left(x-2y\right)^2=\left(5-x+2y\right)\left(5+x-2y\right)\)

Bình luận (0)
HP
15 tháng 9 2021 lúc 12:17

a. x2 - 2xy + y2 - 1

= (x - y)2 - 12

= (x - y - 1)(x - y + 1)

b. 9 - x2 - 2xy - y2

= 32 - (x + y)2

= (3 - x - y)(3 + x + y)

c. 25 - x2 + 4xy - 4y2

= 52 - \(\left[x^2-4xy+\left(2y\right)^2\right]\)

= 52 - (x - 2y)2

= (5 - x + 2y)(5 + x - 2y)

Bình luận (0)
MH
Xem chi tiết
H24
20 tháng 10 2021 lúc 20:39

a) \(x^5+4x+5=\left(x^5+x^4\right)-\left(x^4+x^3\right)+\left(x^3+x^2\right)-\left(x^2+x\right)+\left(5x+5\right)=x^4\left(x+1\right)-x^3\left(x+1\right)+x^2\left(x+1\right)-x\left(x+1\right)+5\left(x+1\right)=\left(x^4-x^3+x^2-x+5\right)\left(x+1\right)\)

b) \(x^4+6x^3+11x^2+6x+1=\left(x^4+3x^3+x^2\right)+\left(3x^3+9x^2+3x\right)+\left(x^2+3x+1\right)=x^2\left(x^2+3x+1\right)+3x\left(x^2+3x+1\right)+\left(x^2+3x+1\right)=\left(x^2+3x+1\right)^2\)

c) \(64x^4+1=\left[\left(8x^2\right)^2+16x^2+1\right]-16x^2=\left(8x^2+1\right)^2-\left(4x\right)^2=\left(8x^2-4x+1\right)\left(8x^2+4x+1\right)\)d) \(81x^4+4=\left[\left(9x^2\right)^2+36x^2+2^2\right]-36x^2=\left(9x^2+2\right)^2-\left(6x\right)^2=\left(9x^2-6x+2\right)\left(9x^2+6x+2\right)\)

 

Bình luận (1)
NM
21 tháng 10 2021 lúc 6:57

Câu 1:

\(e,x^5-x^4-1=x^5-x^4+x^3-x^3+x^2-x^2+x-x-1\\ =\left(x^5-x^4-x^3\right)+\left(x^3-x^2-x\right)+\left(x^2-x-1\right)\\ =x^3\left(x^2-x-1\right)+x\left(x^2-x-1\right)+\left(x^2-x-1\right)\\ =\left(x^2-x-1\right)\left(x^3+x+1\right)\)

Bình luận (0)
NM
21 tháng 10 2021 lúc 7:46

Câu 2:

\(a,\left(3x+ay+b\right)\left(x+cy+d\right)\\ =3x^2+3xcy+3xd+axy+acy^2+ayd+bx+bcy+bd\\ =3x^2+xy\left(3c+a\right)+x\left(b+3d\right)+y\left(ad+bc\right)+acy^2+bd\\ \Leftrightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}3c+a=-22\\b+3d=-4\end{matrix}\right.\\ad+bc=8\\\left\{{}\begin{matrix}ac=7\\bd=1\end{matrix}\right.\end{matrix}\right.\)

Xét \(bd=1\Leftrightarrow\left[{}\begin{matrix}b=1;d=1\\b=-1;d=-1\end{matrix}\right.\)

Với \(b=1;d=1\Leftrightarrow b+3d=1+3\cdot1=4\left(ktm\right)\)

Với \(b=-1;d=-1\Leftrightarrow b+3d=-1-3=-4\left(tm\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}3c+a=-22\\-a-c=8\\ac=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-1\\c=-7\end{matrix}\right.\)

Vậy \(3x^2-22xy-4x+8y+7y^2+1=\left(3x-y-1\right)\left(x-7y-1\right)\)

Cái chỗ ngoặc nhọn mà 5 dòng á a ko thấy trong cái phần công thức nên là ghi z chứ nó có 5 dòng đó nha

câu b tương tự, lười wa 😴

Bình luận (0)
ND
Xem chi tiết
GH
30 tháng 7 2023 lúc 14:04

a

\(8x^3-\dfrac{1}{125}y^3\\ =\left(2x\right)^3-\left(\dfrac{1}{5}y\right)^3\\ =\left(2x-\dfrac{1}{5}y\right)\left[\left(2x\right)^2+2x.\dfrac{1}{5}y+\left(\dfrac{1}{5}y\right)^2\right]\\ =\left(2x-\dfrac{1}{5}y\right)\left(4x^2+\dfrac{2}{5}xy+\dfrac{1}{25}y^2\right)\)

b

\(-x^3+6x^2y-12xy^2+8y^3\\ =-\left(x^3-6x^2y+12xy^2-8y^3\right)\\ =-\left(x^3-3.2y.x^2+3.\left(2y\right)^2.x-\left(2y\right)^3\right)\\ =-\left(x-2y\right)^3\\ =-\left(x-2y\right)\left(x-2y\right)\left(x-2y\right)\)

Bình luận (0)
NT
30 tháng 7 2023 lúc 14:00

a: 8x^3-1/125y^3

=(2x)^3-(1/5y)^3

=(2x-1/5y)(4x^2+2/5xy+1/25y^2)

b: =(2y-x)^3

Bình luận (0)
H9
30 tháng 7 2023 lúc 14:02

a) \(8x^3-\dfrac{1}{125}y^3\)

\(=\left(2x\right)^3-\left(\dfrac{1}{5}y\right)^3\)

\(=\left(2x-\dfrac{1}{5}y\right)\left[\left(2x\right)^2+2x\cdot\dfrac{1}{5}y+\left(\dfrac{1}{5}y\right)^2\right]\)

\(=\left(2x-\dfrac{1}{5}y\right)\left(4x^2+\dfrac{2}{5}xy+\dfrac{1}{24}y^2\right)\)

b) \(-x^3+6x^2y-12xy^2+8y^3\)

\(=-\left(x^3-6x^2y+12xy^2-8y^2\right)\)

\(=-\left(x^3-3\cdot x^2\cdot2y+3\cdot x\cdot\left(2y\right)^2-\left(2y\right)^3\right)\)

\(=-\left(x-2y\right)^3\)

Bình luận (2)
HP
Xem chi tiết
TC
11 tháng 11 2021 lúc 19:11

2.
a) 4x(x-1)-6x+6
= 4x(x-1)-6(x-1)
= (4x-6)(x-1)
3.
a) 6x2-24x=0
    6x(x-4)=0
TH1: 6x=0         TH2: x-4=0
           x=0                     x=4
Vậy x\(\in\){0;4}

Bình luận (0)
HP
11 tháng 11 2021 lúc 19:14

2. a. \(4x\left(x-1\right)-6x+6\)

\(=4x\left(x-1\right)-6\left(x-1\right)\)

\(=\left(4x-6\right)\left(x-1\right)\)

3. a. \(6x^2-24x=0\)

\(\Leftrightarrow6x\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}6x=0\\x-4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

Bình luận (0)
NT
11 tháng 11 2021 lúc 19:59

Bài 3: 

a: \(\Leftrightarrow6x\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

Bình luận (0)
H24
Xem chi tiết
NV
10 tháng 7 2023 lúc 15:58

= 3.(2x+1)-(2x-5)(2x+1)

= (2x+1)(3-2x+5)

=(2x+1)(8-2x)

Bình luận (2)