MH

1.PTĐT thành nhân tử

a) \(x^5+4x+5\)

b) \(x^4+6x^3+11x^2+6x+1\)

c) \(64x^4+1\)

c) \(81x^4+4\)

d) \(4\left(x^2+15x+50\right)\left(x^2+18x+72\right)-3x^2\)

e) \(x^5-x^4-1\)

2.PTĐT thành nhân tử (PP hệ số bất định)

a) \(3x^2-22xy-4x+8y+7y^2+1=\left(3x+ay+b\right)\left(x+cy+d\right)\)

b) \(12x^2+5x-12y^2+12y-10xy-3=\left(ã+by-1\right)\left(dx+cy+3\right)\)

H24
20 tháng 10 2021 lúc 20:39

a) \(x^5+4x+5=\left(x^5+x^4\right)-\left(x^4+x^3\right)+\left(x^3+x^2\right)-\left(x^2+x\right)+\left(5x+5\right)=x^4\left(x+1\right)-x^3\left(x+1\right)+x^2\left(x+1\right)-x\left(x+1\right)+5\left(x+1\right)=\left(x^4-x^3+x^2-x+5\right)\left(x+1\right)\)

b) \(x^4+6x^3+11x^2+6x+1=\left(x^4+3x^3+x^2\right)+\left(3x^3+9x^2+3x\right)+\left(x^2+3x+1\right)=x^2\left(x^2+3x+1\right)+3x\left(x^2+3x+1\right)+\left(x^2+3x+1\right)=\left(x^2+3x+1\right)^2\)

c) \(64x^4+1=\left[\left(8x^2\right)^2+16x^2+1\right]-16x^2=\left(8x^2+1\right)^2-\left(4x\right)^2=\left(8x^2-4x+1\right)\left(8x^2+4x+1\right)\)d) \(81x^4+4=\left[\left(9x^2\right)^2+36x^2+2^2\right]-36x^2=\left(9x^2+2\right)^2-\left(6x\right)^2=\left(9x^2-6x+2\right)\left(9x^2+6x+2\right)\)

 

Bình luận (1)
NM
21 tháng 10 2021 lúc 6:57

Câu 1:

\(e,x^5-x^4-1=x^5-x^4+x^3-x^3+x^2-x^2+x-x-1\\ =\left(x^5-x^4-x^3\right)+\left(x^3-x^2-x\right)+\left(x^2-x-1\right)\\ =x^3\left(x^2-x-1\right)+x\left(x^2-x-1\right)+\left(x^2-x-1\right)\\ =\left(x^2-x-1\right)\left(x^3+x+1\right)\)

Bình luận (0)
NM
21 tháng 10 2021 lúc 7:46

Câu 2:

\(a,\left(3x+ay+b\right)\left(x+cy+d\right)\\ =3x^2+3xcy+3xd+axy+acy^2+ayd+bx+bcy+bd\\ =3x^2+xy\left(3c+a\right)+x\left(b+3d\right)+y\left(ad+bc\right)+acy^2+bd\\ \Leftrightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}3c+a=-22\\b+3d=-4\end{matrix}\right.\\ad+bc=8\\\left\{{}\begin{matrix}ac=7\\bd=1\end{matrix}\right.\end{matrix}\right.\)

Xét \(bd=1\Leftrightarrow\left[{}\begin{matrix}b=1;d=1\\b=-1;d=-1\end{matrix}\right.\)

Với \(b=1;d=1\Leftrightarrow b+3d=1+3\cdot1=4\left(ktm\right)\)

Với \(b=-1;d=-1\Leftrightarrow b+3d=-1-3=-4\left(tm\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}3c+a=-22\\-a-c=8\\ac=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-1\\c=-7\end{matrix}\right.\)

Vậy \(3x^2-22xy-4x+8y+7y^2+1=\left(3x-y-1\right)\left(x-7y-1\right)\)

Cái chỗ ngoặc nhọn mà 5 dòng á a ko thấy trong cái phần công thức nên là ghi z chứ nó có 5 dòng đó nha

câu b tương tự, lười wa 😴

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
TG
Xem chi tiết
KM
Xem chi tiết
NT
Xem chi tiết
PK
Xem chi tiết
CT
Xem chi tiết
NT
Xem chi tiết
TL
Xem chi tiết
WS
Xem chi tiết