7. \(x_1+x_2=2m-2;x_1x_2=2m-3\)
Tìm m để x1, x2 là 2 cạnh của hình chữ nhật có đường chéo là \(\sqrt{10}\)
\(\left(x_1^2-2mx_1-x_2+2m-3\right)\left(x_2^2-2mx_2-x_1+2m-3\right)=19\\ \Leftrightarrow\left(5-2m-2x_1-x_2+2m-3\right)\left(5-2m-2x_2-x_1+2m-3\right)=19\)
Giải thích giúp em vì sao ạ :((
Chị cho e hệ thức Vi-ét của bài được hongg ạ?
\(x_1+x_2=2\left(m-1\right)\)( Vi-ét )
\(\rightarrow x_1+x_2=2m-2\)
\(\Leftrightarrow x_1-2m=-2-x_2\)
\(x_1^2-2mx_1=x_1\left(x_1-2m\right)=x_1\left(-2-x_2\right)=-2x_1-x_1x_2=-2x_1-\left(2m-5\right)=5-2m-2x_1\)
_ Phía sau tương tự với `x_2` nha chị uii_
Tìm các giá trị thực của tham số m để phương trình \(\log_3^2x-m\log_3x+2m-7=0\) có 2 nghiệm thực \(x_1,x_2\) thỏa mãn \(x_1+x_2=9\)
Tìm các giá trị của tham số \(m\) để phương trình \(\left(\log_3x\right)^2-m\log_3x+2m-7=0\) có hai nghiệm thực \(x_1;x_2\) thỏa \(x_1.x_2=81\)
Đặt \(t=log_3x\).
Phương trình ban đầu trở thành: \(t^2-mt+2m-7=0\) (*)
\(t_1+t_2=log_3\left(x_1x_2\right)=log_381=4\)
Để phương trình ban đầu có 2 nghiệm \(x_1,x_2\) thoả \(x_1x_2=81\) thì phương trình (*) phải có 2 nghiệm \(t_1,t_2\) thoả \(t_1+t_2=4\):
\(\left\{{}\begin{matrix}\Delta\ge0\\m=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2-4\left(2m-7\right)\ge0\\m=4\end{matrix}\right.\Leftrightarrow m=4\)
Cho phương trình \(x^2-2\left(m-1\right)x-2m=0\). Tìm m để phương trình có 2 nghiệm \(x_1\), \(x_2\) thỏa mãn \(x_1^2+x_1-x_2=5-2m\).
\(\Delta'=\left(m-1\right)^2+2m=m^2+1>0;\forall m\)
\(\Rightarrow\) Pt luôn có 2 nghiệm pb với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-2m\end{matrix}\right.\)
Cộng vế với vế: \(x_1x_2+x_1+x_2=-2\) (1)
\(x_1^2+x_1-x_2=5-2m\)
\(\Leftrightarrow x_1^2+x_1-x_2=5+x_1x_2\) (2)
Cộng vế với vế (1) và (2):
\(\Rightarrow x_1^2+2x_1=3\)
\(\Leftrightarrow x_1^2+2x_1-3=0\Rightarrow\left[{}\begin{matrix}x_1=1\Rightarrow x_2=-\dfrac{3}{2}\\x_1=-3\Rightarrow x_2=-\dfrac{1}{2}\end{matrix}\right.\) (thế \(x_1\) vào (1) để tính ra \(x_2\))
Thế vào \(x_1x_2=-2m\Rightarrow m=-\dfrac{x_1x_2}{2}\Rightarrow m=\pm\dfrac{3}{4}\)
phan tich:
\(2x_1\left(x_2-1\right)-x_2\left(x_1-2\right)=19\)bt: \(x_1+x_2=2m\),\(x_1.x_2=m^2-2m+3\)
Gọi \(x_1;x_2\) là 2 nghiệm của phương trình \(x^2-2\left(2m+1\right)x+4m^2+4m=0\) Tìm m để \(\left|x_1-x_2\right|=x_1+x_2\)
\(\Delta'=\left(2m+1\right)^2-\left(4m^2+4m\right)=1>0;\forall m\Rightarrow\) pt luôn có 2 nghiệm pb
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(2m+1\right)\\x_1x_2=4m^2+4m\end{matrix}\right.\)
\(\left|x_1-x_2\right|=x_1+x_2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2\ge0\\\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\left(2m+1\right)\ge0\\-2x_1x_2=2x_1x_2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ge-\dfrac{1}{2}\\x_1x_2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ge-\dfrac{1}{2}\\4m^2+4m=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}m=0\\mm=-1< -\dfrac{1}{2}\left(loại\right)\end{matrix}\right.\)
áp dụng vi et
x1+x2=\(\dfrac{-b}{a}=4m+2\)
x1.x2=\(\dfrac{c}{a}=4m^2+4m\)
ta có :
\(|x_1-x_2|=x_1+x_2\)
<->(x1-x2)2=(x1+x2)2
<->(x1+x2)2-4x1.x2=(4m+2)2
<->(4m+2)2-4(4m2+4m)=(4m+2)2
<->16m2+4+16m-16m2-16m=16m2+4+16m
<->16m2+16m=0
<->16m(m+1)=0
<->m=0
m=-1
vậy m =0 và m=-1 thì tm hệ thức trên
cho pt \(x^2-2mx+m^2+2m-6=0\)
a) tìm m để pt có nghiệm
b) với \(x_1x_2\) là 2 nghiệm của pt. Tính \(x_1+x_2\) và \(x_1.x_2\) theo m
c) tìm m để \(x_1.x_2=3.x_1+3.x_2-1\)
\(\Delta'=m^2-\left(m^2+2m-6\right)=-2m+6\)
a.
Pt có nghiệm khi \(-2m+6\ge0\Rightarrow m\le3\)
b.
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2+2m-6\end{matrix}\right.\)
c.
\(x_1x_2=3x_1+3x_2-1\)
\(\Leftrightarrow x_1x_2=3\left(x_1+x_2\right)-1\)
\(\Leftrightarrow m^2+2m-6=3.2m-1\)
\(\Leftrightarrow m^2-4m-5=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=5>3\left(loại\right)\end{matrix}\right.\)
`x^2 -(2m-3)x+2m-4=0(1)`. pt (1) có 2 nghiệm \(x_1;x_2\ne0\). tìm m để \(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{1}{2}\)
\(\Delta=\left(2m-3\right)^2-4\left(2m-4\right)=\left(2m-5\right)^2\ge0;\forall m\)
Pt luôn có 2 nghiệm với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m-3\\x_1x_2=2m-4\end{matrix}\right.\)
\(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{x_1+x_2}{x_1x_2}=\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{2m-3}{2m-4}=\dfrac{1}{2}\)
\(\Rightarrow4m-6=2m-4\)
\(\Leftrightarrow2m=2\)
\(\Leftrightarrow m=1\) (thỏa mãn)
Cho phương trình \(x^2-6x+2m-3=0\). Tìm \(m\) để phương trình có 2 nghiệm \(x_1\), \(x_2\) thỏa mãn \(\left(x_1^2-5x_1+2m-4\right)\left(x_2^2-5x_2+2m-4\right)=2\).
cái này bạn lm cái điều kiện vs giải pt đối chiếu điều kiện Cho mik nhé
cái này mik phân tích đề Cho bạn hiểu
Để phương trình 1 cso 2 nghiệm
=> \(\Delta\ge0\)
<=>\(m\le6\)
=> Theo hệ thức Viét ta có:
\(\left\{{}\begin{matrix}S=x1+x2=6\\P=x1x2=2m-3\end{matrix}\right.\left(\circledast\right)\)
Vì x1 và x2 là nghiệm của pt 1
=> \(\left\{{}\begin{matrix}x1^2-6x1+2m-3=0\\x2^2-6x2+2m-3=0\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}x1^2-5x1+2m-4=x1-1\\x2^2-5x2+2m-4=x2-1\end{matrix}\right.\left(\otimes\right)\)
Theo bài ra ta có :
(x12−5x1+2m−4)(x22−5x2+2m−4)=2 \(\left(\otimes\otimes\right)\)
Thay \(\left(\otimes\right)vào\left(\otimes\otimes\right)\) ta được:
\(\left(x1-1\right)\left(x2-1\right)=2\)
<=> x1x2 - \(\left(x1+x2\right)\) =1 *
Thay \(\left(\circledast\right)\) vào * ta được :
2m - 3 - 6 =1
<=>2m = 10
<=> m=5 <t/m>
Vậy....
Tìm giá trị của tham số \(m\) để phương trình \(4^x-2m.2^x+2m=0\) có hai nghiệm phân biệt \(x_1,x_2\) thỏa \(x_1+x_2=2\)
Lời giải:
Đặt $2^x=t$ thì pt trở thành:
$t^2-2mt+2m=0(*)$
Ta cần tìm $m$ để pt $(*)$ có hai nghiệm $t>0$ phân biệt thỏa mãn $t_1t_2=4$
$(*)$ có 2 nghiệm thì:
$\Delta'=m^2-2m>0\Leftrightarrow m(m-2)>0\Leftrightarrow m>2$ hoặc $m<0$ (1)
Áp dụng định lý Viet, để $(*)$ có 2 nghiệm dương thỏa mãn tích 2 nghiệm bằng 4 thì:
\(\left\{\begin{matrix} S=t_1+t_2>0\\ P=t_1t_2=4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 2m>0\\ 2m=4\end{matrix}\right.\Leftrightarrow m=2\) (2)
Từ $(1); (2)\Rightarrow$ không có giá trị nào của $m$ thỏa mãn