Bài 3: Lôgarit

GB

Tìm các giá trị của tham số \(m\) để phương trình \(\left(\log_3x\right)^2-m\log_3x+2m-7=0\) có hai nghiệm thực \(x_1;x_2\) thỏa \(x_1.x_2=81\)

RH
4 tháng 2 2024 lúc 22:50

Đặt \(t=log_3x\).

Phương trình ban đầu trở thành: \(t^2-mt+2m-7=0\) (*)

\(t_1+t_2=log_3\left(x_1x_2\right)=log_381=4\)

Để phương trình ban đầu có 2 nghiệm \(x_1,x_2\) thoả \(x_1x_2=81\) thì phương trình (*) phải có 2 nghiệm \(t_1,t_2\) thoả \(t_1+t_2=4\):

\(\left\{{}\begin{matrix}\Delta\ge0\\m=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2-4\left(2m-7\right)\ge0\\m=4\end{matrix}\right.\Leftrightarrow m=4\)

Bình luận (0)

Các câu hỏi tương tự
GB
Xem chi tiết
MN
Xem chi tiết
NT
Xem chi tiết
PT
Xem chi tiết
ND
Xem chi tiết
TC
Xem chi tiết
MN
Xem chi tiết
NS
Xem chi tiết
LN
Xem chi tiết