giải hệ phương trình
(x+1)(y+1)=(x-3)(y+3)
(x + 1)(2y - 1) =(2x-1)(y+1)
Giải hệ phương trình: 2x + 1/y = 3/x và 2y + 1/x = 3/y
Đề bài là \(\left\{{}\begin{matrix}2x+\dfrac{1}{y}=\dfrac{3}{x}\\2y+\dfrac{1}{x}=\dfrac{3}{y}\end{matrix}\right.\) hay \(\left\{{}\begin{matrix}\dfrac{2x+1}{y}=\dfrac{3}{x}\\\dfrac{2y+1}{x}=\dfrac{3}{y}\end{matrix}\right.\) nhỉ?
Tốt nhất là bạn sử dụng tính năng gõ công thức trực quan, rất dễ sử dụng, nó nằm chỗ khoanh đỏ này trong khung soạn thảo:
Click vô đó, rồi chọn
Hệ 2 ẩn nằm ở đầu tiên hàng 2
Phân thức thì chỉ cần gõ "/" hoặc chọn biểu tượng phân thức
a, giải phương trình : 4x²+√2x+3=8x+1
B, giải hệ phương trình :
{√x+y+1+(x+2y)=4(x+y) ²+√3*√x+y
X-4y-3=(2y)²-√2-x²
Giải hệ phương trình:
phương trình 1:x2-5y2-8y=3
phương trình 2:(2x+4y-1)√(2x-y-1)=(4x-2y-3)√(x+2y)
Giải Hệ phương trình:
\(\left\{{}\begin{matrix}3\left(x+y\right)=\left(x+2y\right)\left(2x+y\right)\\\dfrac{1}{x+2y}+\dfrac{1}{\left(2x+y\right)^2}=3\end{matrix}\right.\)
1) {x^2+2x^2=3 {2x^2+3x^2=5 2) giải theo m {x+y=2m+1 {x-y=1 3)giải theo m {x +2y=3m+2 {2x+y=3m+2 4) cho hệ. {x+3y=4m+4 {2x+y=3m+3 Tìm m để hệ có nghiệm (x,y) thỏa mãn x+y=4 HỆ PHƯƠNG TRÌNH HẾT Ạ Giúp mik với nhé
4:
x+3y=4m+4 và 2x+y=3m+3
=>2x+6y=8m+8 và 2x+y=3m+3
=>5y=5m+5 và x+3y=4m+4
=>y=m+1 và x=4m+4-3m-3=m+1
x+y=4
=>m+1+m+1=4
=>2m+2=4
=>2m=2
=>m=1
3:
x+2y=3m+2 và 2x+y=3m+2
=>2x+4y=6m+4 và 2x+y=3m+2
=>3y=3m+2 và x+2y=3m+2
=>y=m+2/3 và x=3m+2-2m-4/3=m+2/3
Giải hệ phương trình :
\(\left\{{}\begin{matrix}\sqrt{3+2x^2y-x^4y^2}+x^4\left(1-2x^2\right)=y^2\\1+\sqrt{1+\left(x-y\right)^2}=x^3\left(x^3-x+2y^2\right)\end{matrix}\right.\)
Gõ đề có sai không ạ?
\(\left\{{}\begin{matrix}\sqrt{3+2x^2y-x^4y^2}+x^4\left(1-2x^2\right)=y^4\\1+\sqrt{1+\left(x-y\right)^2}=x^3\left(x^3-x+2y^2\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{4-\left(1-x^2y\right)^2}=2x^6-x^4+y^4\\-\sqrt{1+\left(x-y\right)^2}=1-x^6+x^4-2x^3y^2\end{matrix}\right.\)
Cộng theo vế HPT2
\(\sqrt{4-\left(1-x^2y\right)^2}-\sqrt{1+\left(x-y\right)^2}=\left(x^3-y^2\right)^2+1\)
\(\Leftrightarrow\sqrt{4-\left(1-x^2y\right)^2}=\sqrt{1+\left(x-y\right)^2}+\left(x^3-y^2\right)^2+1\) (1)
Có:
\(\left\{{}\begin{matrix}\sqrt{4-\left(1-x^2y\right)^2}\le2\\\sqrt{1+\left(x-y\right)^2}+\left(x^2-y^2\right)^2+1\ge2\end{matrix}\right.\)
\(\Rightarrow\) (1) xảy ra \(\Leftrightarrow\) \(\left\{{}\begin{matrix}\sqrt{4-\left(1-x^2y\right)^2}=2\\\sqrt{1+\left(x-y\right)^2}=1\\\left(x^3-y^2\right)^2=0\end{matrix}\right.\Leftrightarrow x=y=1\)
Giải hệ phương trình:
\(\hept{\begin{cases}2y^3+y+2x\sqrt{1-x}=3\sqrt{1-x}\\\sqrt{2y^2+1}-y=2-x\end{cases}}\)
Giải hệ phương trình \(\hept{\begin{cases}\frac{3+2x-y}{2x-y}-\frac{6}{x+y}=0\\\frac{1-4x+2y}{2x-y}-\frac{1+2x+2y}{x+y}=0\end{cases}}\)
Hint: đặt \(\frac{1}{2x-y}=a;\frac{1}{x+y}=b\)
Giải hệ phương trình 2 x 2 − y 2 + x y − 5 x + y + 2 = y − 2 x + 1 − 3 − 3 x x 2 − y − 1 = 4 x + y + 5 − x + 2 y − 2
ĐK: y − 2 x + 1 ≥ 0 , 4 x + y + 5 ≥ 0 , x + 2 y − 2 ≥ 0 , x ≤ 1
T H 1 : y − 2 x + 1 = 0 3 − 3 x = 0 ⇔ x = 1 y = 1 ⇒ 0 = 0 − 1 = 10 − 1 ( k o t / m ) T H 2 : x ≠ 1 , y ≠ 1
Đưa pt thứ nhất về dạng tích ta được
( x + y − 2 ) ( 2 x − y − 1 ) = x + y − 2 y − 2 x + 1 + 3 − 3 x ( x + y − 2 ) 1 y − 2 x + 1 + 3 − 3 x + y − 2 x + 1 = 0 ⇒ 1 y − 2 x + 1 + 3 − 3 x + y − 2 x + 1 > 0 ⇒ x + y − 2 = 0
Thay y= 2-x vào pt thứ 2 ta được x 2 + x − 3 = 3 x + 7 − 2 − x
⇔ x 2 + x − 2 = 3 x + 7 − 1 + 2 − 2 − x ⇔ ( x + 2 ) ( x − 1 ) = 3 x + 6 3 x + 7 + 1 + 2 + x 2 + 2 − x ⇔ ( x + 2 ) 3 3 x + 7 + 1 + 1 2 + 2 − x + 1 − x = 0
Do x ≤ 1 ⇒ 3 3 x + 7 + 1 + 1 2 + 2 − x + 1 − x > 0
Vậy x + 2 = 0 ⇔ x = − 2 ⇒ y = 4 (t/m)