tìm m để 3 đường thẳng sau phân biệt và đồng quy:
y=-5(x+1)
y=mx+3
y=3x+m
Tìm giá trị thực của tham số mm để ba đường thẳng y = −5(x + 1), y = mx + 3 và y = 3x + m phân biệt và đồng qui.
A. m ≠ 3
B. m = 13
C. m = -13
D. m = 3
Tìm m để 3 đường thẳng phân biệt sau đồng quy
2x – y = m ; x - y = 2m ; mx – (m – 1)y = 2m – 1
\(2x-y=m\Leftrightarrow y=2x-m\\ x-y=2m\Leftrightarrow y=x-2m\)
PT hoành độ giao điểm 2 đt đầu: \(2x-m=x-2m\Leftrightarrow x=-m\Leftrightarrow y=-3m\Leftrightarrow A\left(-m;-3m\right)\)
Để 3 đt đồng quy thì \(A\left(-m;-3m\right)\in mx-\left(m-1\right)y=2m-1\)
\(\Leftrightarrow-m^2+3m\left(m-1\right)=2m-1\\ \Leftrightarrow2m^2-5m+1=0\\ \Leftrightarrow\left[{}\begin{matrix}m=\dfrac{5+\sqrt{17}}{4}\\m=\dfrac{5-\sqrt{17}}{4}\end{matrix}\right.\)
Cho hai đường thẳng d: y = x + 2m, d′: y = 3x + 2 (m là tham số). Tìm m để ba đường thẳng d, d′ và d′′: y = −mx + 2 phân biệt đồng quy.
A. m = −1
B. m = 3
C. m = 1
D. m = −3
Tìm giá trị thực của tham số m để ba đường thẳng y = 2x, y = −x − 3 và y = mx + 5 phân biệt và đồng qui.
A. m = -7
B. m = 5
C. m = -5
D. m = 7
Tìm m để 3 đường thẳng sau đồng quy:
y = 2x - 1
y = (2m + 3)x - m + 1
y = x + 2
Gọi A là giao điểm của \(y=2x-1\) và \(y=x+2\)
Hoành độ A thỏa mãn:
\(2x-1=x+2\Rightarrow x=3\)
\(\Rightarrow y=5\)
\(\Rightarrow A\left(3;5\right)\)
3 đường thẳng đồng quy khi \(y=\left(2m+3\right)x-m+1\) đi qua A
\(\Rightarrow5=3\left(2m+3\right)-m+1\)
\(\Rightarrow m=-1\)
y = -5x - 5 , y = mx + 3 , y = 3x + m
Tìm m để 3 đường thẳng trên phân biệt và đồng quy
b) y = 2x , y = -3 - x , y = mx + 5
Tìm m để 3 đường thẳng trên phân biệt và đồng quy
a/ Trong quá trình tìm m để các đường thẳng đồng quy đã có phân biệt rồi. Vì nếu k phân biệt thì trùng nhau, mà trùng nhau thì chỉ là 1 đường thẳng ko thể đồng quy được.
Vì 3 đt đồng quy
Xét PTHĐGĐ của đt y= mx+3 và đt y= 3x+m
mx+3= 3x+m
<=> x(m+3)= (m+3)
<=> x=1; y= m+3
Thay vào y= -5x-5
-5-5= m+3
<=> m= -13
câu b tg tự
b)
Ta có phương trình hoành độ giao điểm của hai đường thẳng \(y=2x\) và \(y=-3-x\):
\(\left\{{}\begin{matrix}y=2x\\y=-3-x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-2\end{matrix}\right.\)
Thay x=-1 và y=-2 vào phương trình đường thẳng \(y=mx+5\) ta có:
\(y=mx+5\Leftrightarrow-2=-m+5\Leftrightarrow m=7\)
Cho hai đường thẳng d: y= x+ 2m và d’: y= 3x+2 ( m là tham số). Có mấy giá trị của m để ba đường thẳng d; d’ và d’’: y= -mx+ 2 phân biệt đồng quy.
A.0
B. 1
C. 2
D. 3
Đáp án B
+ Tọa độ giao điểm của hai đường thẳng d và d’ là nghiệm của hệ phương trình:
suy ra d và d’ cắt nhau tại M( m-1; 3m-1)
+ Vì ba đường thẳng d; d’ ; d’’ đồng quy nên d’’ qua M ta có
3m-1= -m( m-1) + 2 hay m2+ 2m-3=0
Suy ra m=1 hoặc m= -3
Với m= 1 ta có ba đường thẳng là d: y= x+ 2; d’ : y= 3x+ 2 và d’’: y= -x+ 2 phân biệt và đồng quy tại M(0; 2).
Với m= -3 ta có d và d’’ trùng nhau suy ra m= -3 không thỏa mãn
Vậy m= 1 là giá trị cần tìm.
Chọn B.
Tìm m, để:
a) 3 đường thẳng:
y=-5(x+1) (d1)
y=mx+3 (d2) ( phân biệt và đồng quy)
y=3x+m (d3)
b) (d) (2m-8)x+(m+2)y+m+1=0 và (d'): (8+2m)x+(m-2)y+3m+1=0 vuông góc với nhau
Tìm m để 3 đường thẳng sau đây đồng quy
a) d1 : y = 4/3x + 1, d2 : y = 2x - 1 và d3 : y = mx + m + 3
b) d1 : y = x - m + 1, d2 : y = 2x và d3 : y = 2(2m - 1)x + 1/4
giải hộ cho tích-kun
a. Gọi A là điểm 3 đường thẳng đồng quy
Phương trình hoành độ giao điểm của d1 và d2: 4/3x + 1= x-1 ⇔ 1/3x = -2 ⇔ x = -6
thay x = -6 vào d2 ⇒ y = -6 -1 = -7
Vậy A(-6;-7)
Để 3 đường thẳng đồng quy thì A thuộc d3 ⇒ -7 = m.(-6) + m+ 3
⇔ -7 = -6m + m + 3
⇔ -5m = -10
⇔ m=2
câu b
a. Gọi A là điểm 3 đường thẳng đồng quy
Phương trình hoành độ giao điểm của d1 và d2: x - m + 1= 2x ⇔ x = -m +1
thay x = -m +1 vào d2 ⇒ y = 2.(-m +1) = -2m +2
Vậy A(-m +1;-2m +2)
Để 3 đường thẳng đồng quy thì A thuộc d3 ⇒ -2m +2 = 2(2m-1).(-m +1) + 1/4
⇔ -2m +2 = -4m² +4m +2m-2 + 1/4
⇔ 4m² - 8m +15m/4=0
Giai pt bậc 2 được m=5/4 và m=3/4