phân tích đa thức sau về dạng hàng đẳng thức
\(3+2\sqrt{2}\)
Phân tích đa thức thành nhân tử bằng phương pháp dùng hàng đẳng thức
4) (2x+3)^3-1
5) 4^2+20xy +25y^2
6) x^4 -64xy^3
4: \(\left(2x+3\right)^3-1\)
\(=\left(2x+3-1\right)\left(4x^2+12x+9+2x+3+1\right)\)
\(=\left(2x+2\right)\left(4x^2+14x+13\right)\)
\(=2\left(x+1\right)\left(4x^2+14x+13\right)\)
5: \(4x^2+20xy+25y^2=\left(2x+5y\right)^2\)
6: \(x^4-64xy^3\)
\(=x\left(x^3-64y^3\right)\)
\(=x\left(x-4y\right)\left(x^2+4xy+16y^2\right)\)
Bài 1: Phân tích các đa thức sau thành nhân tử
HD: Dùng phương pháp đặt nhân tử chung phối hợp dùng hằng đẳng thức số 1, 2
1) x3 – 2x – x 2) 6x2 + 12xy + 6y2
3) 2y3 + 8y3 + 8y 4) 5x2 – 10xy + 5y2
Bài 2: Phân tích các đa thức sau thành nhân tử
HD: Dùng pp đặt nhân tử chung phối hợp dùng hằng đẳng thức số 3, 6, 7
1) x3 – 64x 2) 8x2y – 18y 3) 24x3 – 3
Bài 3: Phân tích các đa thức sau thành nhân tử
HD: Dùng phương pháp nhóm hạng tử phối hợp dùng hằng đẳng thức
1) 5x2 + 10x + 5 – 5y2 2) 3x3 – 6x2 + 3x – 12xy2
3) a3b – ab3 + a2 + 2ab + b2 4) 2x3 – 2xy2 – 8x2 + 8xy
Giup mik với mik cần gấp lắm!
Bài 1:
\(1,Sửa:x^3-2x^2+x=x\left(x^2-2x+1\right)=x\left(x-1\right)^2\\ 2,=6\left(x^2+2xy+y^2\right)=6\left(x+y\right)^2\\ 3,=2y\left(y^2+4y+4\right)=2y\left(y+2\right)^2\\ 4,=5\left(x^2-2xy+y^2\right)=5\left(x-y\right)^2\)
Bài 2:
\(1,=x\left(x^2-64\right)=x\left(x-8\right)\left(x+8\right)\\ 2,=2y\left(4x^2-9\right)=2y\left(2x-3\right)\left(2x+3\right)\\ 3,=3\left(x^3-1\right)=3\left(x-1\right)\left(x^2+x+1\right)\)
Bài 3:
\(a,=5\left(x^2+2x+1-y^2\right)=5\left[\left(x+1\right)^2-y^2\right]=5\left(x-y+1\right)\left(x+y+1\right)\\ b,=3x\left(x^2-2x+1-4y^2\right)=3x\left[\left(x-1\right)^2-4y^2\right]\\ =3x\left(x-2y-1\right)\left(x+2y-1\right)\\ c,=ab\left(a-b\right)\left(a+b\right)+\left(a+b\right)^2\\ =\left(a+b\right)\left(a^2b-ab^2+a+b\right)\\ d,=2x\left(x^2-y^2-4x+4\right)=2x\left[\left(x-2\right)^2-y^2\right]\\ =2x\left(x-y-2\right)\left(x+y-2\right)\)
Bài 1;
1) \(x^3-2x-x=x\left(x^2-2x-1\right)\)
2) \(6x^2+12xy+6y^2=6\left(x^2+2xy+y^2\right)=6\left(x+y\right)^2\)
3) \(2y^3+8y^3+8y=10y^3+8y=2y\left(5y^2+4\right)\)
4) \(5x^2-10xy+5y^2=5\left(x^2-2xy+y^2\right)=5\left(x-y\right)^2\)
Bài 2:
1) \(x^3-64x=x\left(x^2-64\right)=x\left(x-8\right)\left(x+8\right)\)
2) \(8x^2y-18y=2y\left(4x^2-9\right)=2y\left(2x-3\right)\left(2x+3\right)\)
3) \(24x^3-3=3\left(8x^3-1\right)=3\left(2x-1\right)\left(4x^2+2x+1\right)\)
Bài 3:
1) \(5x^2+10x+5-5y^2=5\left(x^2+2x+1-y^2\right)=5\left[\left(x+1\right)^2-y\right]=5\left(x-y+1\right)\left(x+y+1\right)\)
2) \(3x^3-6x^2+3x-12xy^2=3x\left(x^2-2x+1-4y^2\right)=3x\left[\left(x-1\right)^2-\left(2y\right)^2\right]=3x\left(x-2y-1\right)\left(x+2y-1\right)\)
3) \(a^3b-ab^3+a^2+2ab+b^2=ab\left(a^2-b^2\right)+\left(a+b\right)^2=ab\left(a-b\right)\left(a+b\right)+\left(a+b\right)^2=\left(a+b\right)\left(a^2b-ab^2+a+b\right)\)
4) \(2x^3-2xy^2-8x^2+8xy=2x\left(x^2-y^2-4x+4y\right)=2x\left[\left(x-y\right)\left(x+y\right)-4\left(x-y\right)\right]=2x\left(x-y\right)\left(x+y-4\right)\)
phân tích đa thức thành nhân tử dưới dạng hằng đẳng thức:
a)x3+3x2+3x+1
b)(x+y)2-9x2
a)x3+3x2+3x+1
=x3+3x2*1+3x*12+13
=(x+1)3
b)(x+y)2-9x2
=y2+2xy+x2-9x2
=y2-2xy+4xy-8x2
=y(y-2x)+4x(y-2x)
=(y-2x)(y+4x)
Hãy biến đổi biểu thức sau về hàng đẳng thức rồi thu gọn\(\sqrt{12-3\sqrt{7}}\) và\(\sqrt{10+2\sqrt{5}}\)
~ Cái này chỉ giành riêng cho người mà mình chỉ định, tuyệt đối không ai được làm ~
Bài 1: Phân tích các đẳng thức sau:
a) ( 4x + 5 )2
b) ( 5x - 2 )2
c) 82 - 12x2
Bài 2: Đưa những dãy số sau về một hằng đẳng thức.
a) 9x2 - 12x + 4
b) x2 + 2x + 1
c) 6x2 - 14 + 5 - 2x2
Bài 3: Áp dụng những hằng đẳng thức trên hãy phân tích đa thức sau thành nhân tử.
~ Phân tích đa thức thành nhân tử tức là đưa một đa thức thành tích của hai đa thức, gần giống tính chất phân phối, cái j giống nhau là đặt ra bên ngoài ngoặc. ~
a) 2x2 + 5x - x
b) 5x4 - x4+ 8x2 + 4
c) 5x2 + 1 - 5 - x2
a, \(\left(4x+5\right)^2=\left(4x+5\right)\left(4x+5\right)=\left[\left(4x+5\right)4x\right]+\left[\left(4x+5\right)5\right]=4x^2+20x+25\)
b, \(\left(5x-2\right)^2=\left(5x-2\right)\left(5x-2\right)=\left[\left(5x-2\right)5x-\left(5x-2\right)2\right]=5x^2-10x+25\)
b, \(8^2-12x^2=\left(8^2-12x^2\right)\left(8^2+12x^2\right)\)
đúng ko :)
@No name: Bị sai rồi nhé, a,b,c sai hết :>
a) ( 4x + 5 )2
= ( 4x )2 + 2.4x.5 + 52
= 16x2 + 40x + 25
b) ( 5x - 2 )2
= ( 5x )2 - 2.5x.2 + 22
= 25x2 - 20x + 4
c) 82 - 12x2
= 64 - 12x2
= ( V8 - V12x )( V8 + V12x )
phân tích đa thức thành nhân tử bằng cách ẳ dụng hàng đẳng thức hiêun 2 bình phương
4x2-5xy-2y2
Phân tích đa thức sau thành tích bằng phương pháp dùng hằng đẳng thức
48 - 4y2 - 4y
\(48-4y^2-4y\)
\(=-\left(4y^2+4y-48\right)\)
\(=-\left(4y^2+4y+1-49\right)\)
\(=-\left[\left(2y+1\right)^2-7^2\right]\)
\(=-\left(2y+1-7\right)\left(2y+1+7\right)\)
\(=-\left(2y-6\right)\left(2y+8\right)\)
\(=-4\left(y-3\right)\left(y+4\right)\)
Đưa về hàng đẳng thức cần sử dụng và phân tích thành nhân tử:
\(\dfrac{x^2}{2}-2x^2\)
\(\dfrac{x^2}{2}-2x^2\)
\(=\dfrac{1}{2}x^2-2x^2\)
\(=-\dfrac{3}{2}x^2\)
phân tích đa thức sau thành nhân tửvs phương pháp hằng đẳng thức
(2a-b)^2 - 4(a-b)^2
\(\left(2a-b\right)^2-4\left(a-b\right)^2\)
\(=\left(2a\right)^2-2.2a.b+b^2-4.a^2-2.a.b+b^2\)
\(=4a^2-4ab+b^2-4a^2-2ab+b^2\)
\(=-6ab+2b^2\)
\(\left(2a-b\right)^2-4\left(a-b\right)^2=4a^{^2}-4ab+b^2-4\left(a^2-2ab+b^2\right)=4a^2-4ab+b^2-4a^2+8ab-4b^2=4ab-3b^2=b\left(4a-3b\right)\)