gpt \(\sqrt{\frac{x}{3}-3}+\sqrt{7-\frac{x}{3}}=2x-7-\frac{x^2}{9}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
GPT: \(\frac{x^2-2x+14}{\sqrt{\left(7-2x\right)\left(2x+3\right)}}+\frac{12+2x-x^2}{\sqrt{4x^2-8x+29}}=20\)
gpt:
\(x^4-2x^3+x=\sqrt{(x^2-x).2}\)
\(x(5x^3+2)-2(\sqrt{2x+1}-1)=0\)
\(\sqrt{x+\frac{3}{x}}=\frac{x^2-7}{2x+2}\)
c) Ta có:
\(\sqrt{x+\frac{3}{x}}=\frac{x^2+7}{2\left(x+1\right)}\)
\(\Leftrightarrow\sqrt{x+\frac{3}{x}}-2=\frac{x^2+7}{2\left(x+1\right)}-2\)
\(\Leftrightarrow\frac{\sqrt{x^2+3}-2\sqrt{x}}{\sqrt{x}}=\frac{x^2-4x+3}{2\left(x+1\right)}\)
\(\Leftrightarrow\frac{x^2-4x+3}{\sqrt{x^3+3x}+2x}=\frac{x^2-4x+3}{2\left(x+1\right)}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-4x+3=0\\\sqrt{x^3+3x}+2x=2\left(x+1\right)\end{cases}}\)
+) \(x^2-4x+3=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\)
+) \(\sqrt{x^3+3x}+2x=2x+2\Rightarrow x=1\)
a/ Đặt \(\sqrt{2\left(x^2-x\right)}=a\)
\(\Rightarrow a^4-2a^2=a\)
\(\Leftrightarrow a\left(a+1\right)\left(a^2-a-1\right)=0\)
b/ \(x\left(5x^3+2\right)-2\left(\sqrt{2x+1}-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{2x+1}-1\right)^2+5x^4=0\)
\(\Leftrightarrow x=0\)
GPT \(x^2+3x-\frac{7}{4}=2\sqrt{2x-3}\)
ĐKXĐ: \(x\ge\frac{3}{2}\)
\(\Leftrightarrow x^2-\frac{7}{4}+3x-2\sqrt{2x-3}=0\)
\(\Leftrightarrow x^2-\frac{7}{4}+\frac{9x^2-8x+12}{3x+2\sqrt{2x-3}}=0\)
\(\Leftrightarrow x^2-\frac{7}{4}+\frac{9\left(x-\frac{4}{9}\right)^2+\frac{92}{9}}{3x+2\sqrt{2x-3}}=0\)
Do \(x\ge\frac{3}{2}\Rightarrow x^2-\frac{7}{4}>0\Rightarrow VT>0\)
Pt vô nghiệm
a. \(\lim\limits_{x\rightarrow0}\frac{\sqrt{1+2x}-1}{2x}\) f. \(\lim\limits_{x\rightarrow1}\frac{\sqrt{2x+7-3}}{2-\sqrt{x+3}}\)
b. \(\lim\limits_{x\rightarrow0}\frac{4x}{\sqrt{9+x}-3}\) g. \(\lim\limits_{x\rightarrow0}\frac{\sqrt{x^2+1}-1}{\sqrt{x^2+16}-4}\)
c. \(\lim\limits_{x\rightarrow2}\frac{\sqrt{x+7}-3}{x-2}\) h. \(\lim\limits_{x\rightarrow4}\frac{\sqrt{x+5}-\sqrt{2x+1}}{x-4}\)
d. \(\lim\limits_{x\rightarrow1}\frac{3x-2\sqrt{4x^2-x-2}}{x^2-3x+2}\) k. \(\lim\limits_{x\rightarrow0}\frac{\sqrt{x+1}+\sqrt{x+4}-3}{x}\)
e. \(\lim\limits_{x\rightarrow1}\frac{\sqrt{2x+7}+x-4}{x^3-4x^2+3}\)
a) \(\lim\limits_{x\rightarrow0}\frac{\sqrt{1+2x}-1}{2x}=\lim\limits_{x\rightarrow0}\frac{2x}{2x\left(\sqrt{1+2x}+1\right)}=\lim\limits_{x\rightarrow0}\frac{1}{\sqrt{1+2x}+1}=\frac{1}{2}\)
b) \(\lim\limits_{x\rightarrow0}\frac{4x}{\sqrt{9+x}-3}=\lim\limits_{x\rightarrow0}\frac{4x\left(\sqrt{9+x}+3\right)}{x}=\lim\limits_{x\rightarrow0}[4\left(\sqrt{9+x}+3\right)=24\)
c) \(\lim\limits_{x\rightarrow2}\frac{\sqrt{x+7}-3}{x-2}=\lim\limits_{x\rightarrow2}\frac{x-2}{\left(x-2\right)\left(\sqrt{x+7}+3\right)}=\lim\limits_{x\rightarrow2}\frac{1}{\sqrt{x+7}+3}=\frac{1}{6}\)
d) \(\lim\limits_{x\rightarrow1}\frac{3x-2-\sqrt{4x^2-x-2}}{x^2-3x+2}=\lim\limits_{x\rightarrow1}\frac{\left(3x-2\right)^2-\left(4x^2-4x-2\right)}{(x^2-3x+2)\left(3x-2+\sqrt{4x^2-x-2}\right)}=\lim\limits_{x\rightarrow1}\frac{\left(x-1\right)\left(5x-6\right)}{\left(x-1\right)\left(x-2\right)\left(3x-2+\sqrt{4x^2-x-2}\right)}=\frac{1}{2}\\ \\\\ \\ \\ \\ \)
e)\(\lim\limits_{x\rightarrow1}\frac{\sqrt{2x+7}+x-4}{x^3-4x^2+3}=\lim\limits_{x\rightarrow1}\frac{2x+7-\left(x^2-8x+16\right)}{\left(x-1\right)\left(x^2-3x-3\right)\left(\sqrt{2x+7}-x+4\right)}=\lim\limits_{x\rightarrow1}\frac{\left(x-1\right)\left(x-9\right)}{\left(x-1\right)\left(x^2-3x-3\right)\left(\sqrt{2x+7}-x+4\right)}=\lim\limits_{x\rightarrow1}\frac{x-9}{\left(x^2-3x-3\right)\left(\sqrt{2x+7}-x+4\right)}=-8\)
f) \(\lim\limits_{x\rightarrow1}\frac{\sqrt{2x+7}-3}{2-\sqrt{x+3}}=\lim\limits_{x\rightarrow1}\frac{(2x-2)\left(2+\sqrt{x+3}\right)}{\left(1-x\right)\left(\sqrt{2x+7}+3\right)}=\lim\limits_{x\rightarrow1}\frac{-2\left(2+\sqrt{x+3}\right)}{\sqrt{2x+7}+3}=\frac{-4}{3}\)
g) \(\lim\limits_{x\rightarrow0}\frac{\sqrt{x^2+1}-1}{\sqrt{x^2+16}-4}=\lim\limits_{x\rightarrow0}\frac{x^2\left(\sqrt{x^2+16}+4\right)}{x^2\left(\sqrt{x^2+1}+1\right)}=4\)
h)
\(\lim\limits_{x\rightarrow4}\frac{\sqrt{x+5}-\sqrt{2x+1}}{x-4}=\lim\limits_{x\rightarrow4}\frac{\sqrt{x+5}-3}{x-4}+\lim\limits_{x\rightarrow4}\frac{3-\sqrt{2x+1}}{x-4}=\lim\limits_{x\rightarrow4}\frac{1}{\sqrt{x+5}+4}+\lim\limits_{x\rightarrow4}\frac{8-2x}{\left(x-4\right)\left(3+\sqrt{2x+1}\right)}=\frac{1}{7}-\frac{1}{3}=\frac{-4}{21}\)
k) \(\lim\limits_{x\rightarrow0}\frac{\sqrt{x+1}+\sqrt{x+4}-3}{x}=\lim\limits_{x\rightarrow0}\frac{\sqrt{x+1}-1}{x}+\lim\limits_{x\rightarrow0}\frac{\sqrt{x+4}-2}{x}=\lim\limits_{x\rightarrow0}\frac{1}{\sqrt{x+1}+1}+\lim\limits_{x\rightarrow0}\frac{1}{\sqrt{x+4}+2}=\frac{1}{2}+\frac{1}{4}=\frac{3}{4}\)
GPT
a) \(\sqrt{5x}-\sqrt{20x}+\sqrt{180x}-15=0\)
b) \(\frac{1}{2}\sqrt{x-1}-\frac{3}{2}\sqrt{9x-9}+24\sqrt{\frac{x-1}{64}=-17}\)
c)\(x-7\sqrt{x-3}+9=0\)
d) \(-5x+7\sqrt{x}+12=0\)
GPT
a) \(\sqrt{x}+\sqrt{x+1}=\frac{1}{\sqrt{x}}\)
b) \(\frac{x+3+2\sqrt{x^2-9}}{2x-6+\sqrt{x^2-9}}=\sqrt{2}\)
a)
ĐK x >= 0 (1)
pt <=> \(\sqrt{x+1}=\frac{1}{\sqrt{x}}-\sqrt{x}\)
ĐK \(\frac{1}{\sqrt{x}}-\sqrt{x}\ge0\) => \(\frac{1-x}{\sqrt{x}}\ge0\) => \(x\le1\) (2)
pt <=> \(x+1=\frac{1}{x}+x-2\Leftrightarrow\frac{1}{x}=3\Rightarrow x=\frac{1}{3}\) ( TM (1) và (2) )
Vậy x = 1/3 là n* của pt
b) ĐKXĐ: t lười lắm, c tự tìm nhe :D
đặt a=x+3
b=x-3
khi đó ptr trở thành:
\(\frac{a+2\sqrt{ab}}{2b+\sqrt{ab}}\)=\(\sqrt{2}\)
<=>\(\frac{\sqrt{a}.\left(\sqrt{a}+2\sqrt{b}\right)}{\sqrt{b}\left(\sqrt{a}+2\sqrt{b}\right)}\)=\(\sqrt{2}\)
<=>\(\frac{\sqrt{a}}{\sqrt{b}}\)=\(\sqrt{2}\)
<=>a/b=2
<=>a=2b
<=>x+3=2(x-3)
<=>x+3=2x-6
<=>x=9(chắc chắn là thỏa mãn ĐKXĐ nhưng mà sao thay vào ko đc nhỉ.phát hiện lỗi sai sửa giùm t nhe! :D)
1)\(7\sqrt{3x-7}+\left(4x-7\right)\sqrt{7-x}=32\)
2)\(4x^2-11x+6=\left(x-1\right)\sqrt{2x^2-6x+6}\)
3)\(9+3\sqrt{x\left(3-2x\right)}=7\sqrt{x}+5\sqrt{3-2x}\)
4)\(\sqrt{2x^2+4x+7}=x^4+4x^3+3x^2-2x-7\)
5)\(\frac{6-2x}{\sqrt{5-x}}+\frac{6+2x}{\sqrt{5+x}}=\frac{8}{3}\)
6)\(2\left(5x-3\right)\sqrt{x+1}+\left(x+1\right)\sqrt{3-x}=3\left(5x+1\right)\)
7)\(\sqrt{7x+7}+\sqrt{7x-6}+2\sqrt{49x^2+7x-42}=181-14x\)
\(\left(\frac{2}{\sqrt{x}-2}+\frac{3}{2\sqrt{x}+1}-\frac{5\sqrt{x}-7}{2x-3\sqrt{x}-2}\right)\): \(\frac{2\sqrt{x}+3}{5x-10\sqrt{x}}\)(với x >0, x khác 4)
Ta có: \(\left(\dfrac{2}{\sqrt{x}-2}+\dfrac{3}{2\sqrt{x}+1}-\dfrac{5\sqrt{x}-7}{2x-3\sqrt{x}-2}\right):\dfrac{2\sqrt{x}+3}{5x-10\sqrt{x}}\)
\(=\dfrac{4\sqrt{x}+2+3\sqrt{x}-6-5\sqrt{x}+7}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{5\sqrt{x}\left(\sqrt{x}-2\right)}{2\sqrt{x}+3}\)
\(=\dfrac{2\sqrt{x}+3}{2\sqrt{x}+1}\cdot\dfrac{5\sqrt{x}}{2\sqrt{x}+3}\)
\(=\dfrac{5\sqrt{x}}{2\sqrt{x}+1}\)
Gpt \(\frac{1}{\sqrt{2x+1}}-\frac{2}{\sqrt{7-x}}=0\)