Những câu hỏi liên quan
H24
Xem chi tiết
NL
5 tháng 3 2021 lúc 17:44

1.a.

\(\left(x+1\right)\left(x+2\right)\left(x-2\right)\left(x+5\right)\ge m\)

\(\Leftrightarrow\left(x^2+3x+2\right)\left(x^2+3x-10\right)\ge m\)

Đặt \(x^2+3x-10=t\ge-\dfrac{49}{4}\)

\(\Rightarrow\left(t+2\right)t\ge m\Leftrightarrow t^2+2t\ge m\)

Xét \(f\left(t\right)=t^2+2t\) với \(t\ge-\dfrac{49}{4}\)

\(-\dfrac{b}{2a}=-1\) ; \(f\left(-1\right)=-1\) ; \(f\left(-\dfrac{49}{4}\right)=\dfrac{2009}{16}\)

\(\Rightarrow f\left(t\right)\ge-1\)

\(\Rightarrow\) BPT đúng với mọi x khi \(m\le-1\)

Có 30 giá trị nguyên của m

Bình luận (0)
NL
5 tháng 3 2021 lúc 17:50

1b.

Với \(x=0\)  BPT luôn đúng

Với \(x\ne0\) BPT tương đương:

\(\dfrac{\left(x^2-2x+4\right)\left(x^2+3x+4\right)}{x^2}\ge m\)

\(\Leftrightarrow\left(x+\dfrac{4}{x}-2\right)\left(x+\dfrac{4}{x}+3\right)\ge m\)

Đặt \(x+\dfrac{4}{x}-2=t\) \(\Rightarrow\left[{}\begin{matrix}t\ge2\\t\le-6\end{matrix}\right.\)

\(\Rightarrow t\left(t+5\right)\ge m\Leftrightarrow t^2+5t\ge m\)

Xét hàm \(f\left(t\right)=t^2+5t\) trên \(D=(-\infty;-6]\cup[2;+\infty)\)

\(-\dfrac{b}{2a}=-\dfrac{5}{2}\notin D\) ; \(f\left(-6\right)=6\) ; \(f\left(2\right)=14\)

\(\Rightarrow f\left(t\right)\ge6\)

\(\Rightarrow m\le6\)

Vậy có 37 giá trị nguyên của m thỏa mãn

Bình luận (0)
NL
5 tháng 3 2021 lúc 17:56

2.

Xét với \(x\ge1\)

\(m\left(x+1\right)+3\left(x-1\right)-2\sqrt{x^2-1}=0\)

\(\Leftrightarrow m+3\left(\dfrac{x-1}{x+1}\right)-2\sqrt{\dfrac{x-1}{x+1}}=0\)

Đặt \(\sqrt{\dfrac{x-1}{x+1}}=t\Rightarrow0\le t< 1\)

\(\Rightarrow m+3t^2-2t=0\)

\(\Leftrightarrow3t^2-2t=-m\)

Xét hàm \(f\left(t\right)=3t^2-2t\) trên \(D=[0;1)\)

\(-\dfrac{b}{2a}=\dfrac{1}{3}\in D\) ; \(f\left(0\right)=0\) ; \(f\left(\dfrac{1}{3}\right)=-\dfrac{1}{3}\) ; \(f\left(1\right)=1\)

\(\Rightarrow-\dfrac{1}{3}\le f\left(t\right)< 1\)

\(\Rightarrow\) Pt có nghiệm khi \(-\dfrac{1}{3}\le-m< 1\)

\(\Leftrightarrow-1< m\le\dfrac{1}{3}\)

Bình luận (0)
TV
Xem chi tiết
KT
Xem chi tiết
LL
4 tháng 5 2021 lúc 22:29

undefined

Bình luận (0)
H24
Xem chi tiết
HP
12 tháng 3 2021 lúc 13:03

1.

Nếu \(m=0\)\(f\left(x\right)=2x\)

\(\Rightarrow m=0\) không thỏa mãn

Nếu \(x\ne0\)

Yêu cầu bài toán thỏa mãn khi \(\left\{{}\begin{matrix}m< 0\\\Delta'=\left(m-1\right)^2-4m^2< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow m< -\dfrac{1}{3}\)

Bình luận (0)
HP
16 tháng 4 2021 lúc 6:52

2.

\(\dfrac{-x^2+2x-5}{x^2-mx+1}\le0\forall x\)

\(\Leftrightarrow\dfrac{-\left(x-1\right)^2-4}{x^2-mx+1}\le0\forall x\)

\(\Leftrightarrow x^2-mx+1>0\forall x\)

\(\Leftrightarrow\Delta=m^2-4< 0\Leftrightarrow-2< m< 2\)

Kết luận: \(-2< m< 2\)

Bình luận (0)
TA
Xem chi tiết
TA
7 tháng 6 2020 lúc 11:21

Lưu ý là</: dấu nhỏ hơn hoặc bằng

Bình luận (0)
NL
7 tháng 6 2020 lúc 13:32

Do \(-x^2+2x-5=-\left(x-1\right)^2-4< 0;\forall x\) nên BPT tương đương:

\(x^2-mx+1>0\) ; \(\forall x\in R\)

\(\Leftrightarrow\Delta=m^2-4< 0\Rightarrow-2< m< 2\)

Bình luận (0)
MT
Xem chi tiết
KR
Xem chi tiết
TQ
Xem chi tiết
TL
Xem chi tiết
NT
25 tháng 2 2022 lúc 20:46

Bài 2: 

Để phương trình có hai nghiệm trái dấu thì (m-2)(m+2)<0

hay -2<m<2

Bình luận (0)