Những câu hỏi liên quan
NV
Xem chi tiết
NT
17 tháng 12 2022 lúc 12:35

C=|2x-3/5|+4/3>=4/3

Dấu = xảy ra khi x=3/10

D=|x-3|+|-x-2|>=|x-3-x-2|=5

Dấu = xảy ra khi -2<=x<=3

Bình luận (0)
LH
Xem chi tiết
H24
1 tháng 2 2019 lúc 15:14

a) GTNN

b) GTLN

c, GTNN

d,GTNN

Bình luận (0)
H24
1 tháng 2 2019 lúc 15:17

Ta có:

/x+1/>=0 với mọi x E R

=>A=/x+1/-2019 >= -2019

=> Amin=-2019

Vậy: Amin=-2019 dấu "=" xảy ra khi: x=-1

Bình luận (0)
H24
Xem chi tiết
NN
26 tháng 12 2022 lúc 14:50

đợi tý

Bình luận (0)
WS
28 tháng 12 2022 lúc 21:07

a) Để \(A=\dfrac{2022}{\left|x\right|+2023}\) đạt Max thì |x| + 2023 phải đạt Min

Ta có \(\left|x\right|\ge0\forall x\Rightarrow\left|x\right|+2023\ge2023\forall x\)

\(\Rightarrow\dfrac{2022}{\left|x\right|+2023}\le\dfrac{2022}{2023}\forall x\)

Dấu "=" xảy ra khi \(\left|x\right|=0\Rightarrow x=0\)

Vậy Max \(A=\dfrac{2022}{\left|x\right|+2023}=\dfrac{2022}{2023}\) đạt được khi x = 0

b) Để \(B=\left(\sqrt{x}+1\right)^{99}+2022\) đạt Min với \(x\ge0\) thì \(\sqrt{x}+1\) phải đạt Min

Ta có \(\sqrt{x}\ge0\forall x\ge0\Rightarrow\sqrt{x}+1\ge1\forall x\ge0\)

\(\Rightarrow\left(\sqrt{x}+1\right)^{99}+2022\ge1+2022\ge2023\forall x\ge0\)

Dấu "=" xảy ra khi \(\sqrt{x}=0\Rightarrow x=0\)

Vậy Max \(B=\left(\sqrt{x}+1\right)^{99}+2022=2023\) đạt được khi x = 0

Câu c) và d) thì tự làm, ko có rảnh =))))

Bình luận (0)
DM
18 tháng 8 2023 lúc 16:46

Đã trả lời rồi còn độ tí đồ ngull

Bình luận (0)
TT
Xem chi tiết
NT
30 tháng 7 2023 lúc 20:38

\(=\dfrac{tan\left(\dfrac{pi}{2}+x\right)\cdot sin\left(-x\right)\cdot cos\left(x-pi\right)}{cos\left(\dfrac{pi}{2}-x\right)\cdot sin\left(x+pi\right)}\)

\(=\dfrac{-cotx\cdot sin\left(-x\right)\cdot\left(-cosx\right)}{sinx\cdot-sinx}\)

\(=\dfrac{cotx\cdot sinx\left(-1\right)\cdot cosx}{-sinx\cdot sinx}=\dfrac{\dfrac{cosx}{sinx}\cdot cosx}{sinx}=\dfrac{cos^2x}{sin^2x}=cot^2x\)

Bình luận (0)
AN
Xem chi tiết
NL
1 tháng 8 2021 lúc 18:13

\(y=x+\dfrac{1}{x}-5\ge2\sqrt{\dfrac{x}{x}}-5=-3\)

\(y_{min}=-3\) khi \(x=1\)

\(y=4x^2+\dfrac{1}{2x}+\dfrac{1}{2x}-4\ge3\sqrt[3]{\dfrac{4x^2}{2x.2x}}-4=-1\)

\(y_{min}=-1\) khi \(x=\dfrac{1}{2}\)

\(y=x+\dfrac{4}{x}\Rightarrow y'=1-\dfrac{4}{x^2}=0\Rightarrow x=-2\)

\(y\left(-2\right)=-4\Rightarrow\max\limits_{x>0}y=-4\) khi \(x=-2\)

Bình luận (0)
TQ
Xem chi tiết
LC
13 tháng 6 2023 lúc 16:42

Tìm GTNN chứ nhỉ e

\(D=\left|2022-x\right|+\left|x-1\right|\ge\left|2022-x+x-1\right|=2021\)

Dấu "=" xảy ra \(\Leftrightarrow\left(2022-x\right)\left(x-1\right)\ge0\)

\(\Leftrightarrow1\le x\le2022\)

Vậy Min D=2021 \(\Leftrightarrow1\le x\le2022\)

Bình luận (0)
NL
Xem chi tiết
GD

\(A=\left|x+1\right|-3\\ min_A=-3.khi.x+1=0\Leftrightarrow x=-1\\ B=-\left|x-\dfrac{3}{7}\right|-\dfrac{1}{4}\\ max_B=-\dfrac{1}{4}.khi.\left(x-\dfrac{3}{7}\right)=0\Leftrightarrow x=\dfrac{3}{7}\)

Bình luận (0)
WS
22 tháng 9 2023 lúc 14:48

a)

A = |x + 1| - 3 ≥ 0 - 3 = -3

Dấu "=" xảy ra khi x + 1 = 0 hay x = -1

Do đó A đạt GTNN là -3 khi x = -1

b)

\(B=-\left|x-\dfrac{3}{7}\right|-\dfrac{1}{4}\le-0-\dfrac{1}{4}=-\dfrac{1}{4}\)

Dấu "=" xảy ra khi khi \(x-\dfrac{3}{7}=0\) hay \(x=\dfrac{3}{7}\)

Do đó B đạt GTLN là \(-\dfrac{1}{4}\) khi \(x=\dfrac{3}{7}\)

Bình luận (0)
H24
Xem chi tiết
KL
23 tháng 10 2023 lúc 6:24

2022/2023 . (9/13 - 7/11) + 2022/2023 . (17/13- 4/17)

= 2022/2023 . 190/43 + 2022/2023 . 237/221

= 2022/2023 . (190/43 + 237/221)

= 2022/2023 . 52181/9503

= 105509982/19224569

Bình luận (0)
H9
23 tháng 10 2023 lúc 6:48

Sửa: \(\dfrac{2022}{2023}\cdot\left(\dfrac{9}{13}-\dfrac{7}{11}\right)+\dfrac{2022}{2023}\cdot\left(\dfrac{17}{13}-\dfrac{4}{11}\right)\)

\(=\dfrac{2022}{2023}\cdot\left(\dfrac{9}{13}-\dfrac{7}{11}+\dfrac{17}{13}-\dfrac{4}{11}\right)\)

\(=\dfrac{2022}{2023}\cdot\left(2-1\right)\)

\(=\dfrac{2022}{2023}\cdot1\)

\(=\dfrac{2022}{2023}\)

Bình luận (0)
H24
Xem chi tiết
NM
12 tháng 10 2021 lúc 17:22

\(a,B=4,2+\left|x+1,5\right|\ge4,2\\ B_{min}=4,2\Leftrightarrow x+1,5=0\Leftrightarrow x=-1,5\\ b,C=\dfrac{4}{5}-\left|2x+1\right|\le\dfrac{4}{5}\\ C_{max}=\dfrac{4}{5}\Leftrightarrow2x+1=0\Leftrightarrow x=-\dfrac{1}{2}\)

Bình luận (0)
LN
12 tháng 10 2021 lúc 17:30

a, Do |x +1,5| ≥ 0 ⇒ 4,2 + |x + 1,5| ≥ 4,2

Dấu "=" xảy ra ⇔ x + 1,5 = 0 ⇔  x = - 1,5

Vậy Bmin=  4,2 ⇔ x= -1,5

b, Do |2x + 1| ≥ 0 ⇒ \(\dfrac{4}{5}-\left|2x+1\right|\le\dfrac{4}{5}\)

Dấu "=" xảy ra ⇔ 2x + 1 = 0 ⇔ 2x = -1 ⇔ \(x=-\dfrac{1}{2}\)

Vậy Cmax \(\dfrac{4}{5}\Leftrightarrow x=-\dfrac{1}{2}\)

Bình luận (0)