Tìm x, biết:
240 - 2023 : x = 121
tìm x biết
\(\dfrac{x-2023}{6}\)\(+\dfrac{x-2023}{10}\)\(+\dfrac{x-2023}{15}\)\(+\dfrac{x-2023}{21}\)=\(\dfrac{8}{21}\)
\(\dfrac{x-2023}{6}+\dfrac{x-2023}{10}+\dfrac{x-2023}{15}+\dfrac{x-2023}{21}=\dfrac{8}{21}\)
\(\left(x-2023\right)\left(\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}\right)=\dfrac{8}{21}\)
\(\left(x-2023\right).\dfrac{8}{21}=\dfrac{8}{21}\)
\(x-2023=1\)
\(x=2024\)
Vậy..............
\(...\Rightarrow\left(x-2023\right)\left(\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}\right)=\dfrac{8}{21}\)
\(\Rightarrow\left(x-2023\right)\left(\dfrac{35+21+14+1}{210}\right)=\dfrac{8}{21}\)
\(\Rightarrow\left(x-2023\right).\dfrac{71}{210}=\dfrac{8}{21}\)
\(\Rightarrow\left(x-2023\right).\dfrac{71}{210}=\dfrac{8}{21}.\dfrac{210}{71}=\dfrac{80}{71}\)
\(\Rightarrow x-2023=\dfrac{80}{71}\Rightarrow x=\dfrac{80}{71}+2023=\dfrac{143713}{71}\)
\(\dfrac{x-2023}{6}+\dfrac{x-2023}{10}+\dfrac{x-2023}{15}+\dfrac{x-2023}{21}=\dfrac{8}{21}\)
\(\Leftrightarrow\left(x-2023\right).\left(\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}\right)=\dfrac{8}{21}\)
\(\Leftrightarrow\left(x-2023\right).\left(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}\right)=\dfrac{4}{21}\)
\(\Leftrightarrow\left(x-2023\right).\left(\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}\right)=\dfrac{4}{21}\)
\(\Leftrightarrow\left(x-2023\right).\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}\right)=\dfrac{4}{21}\)
\(\Leftrightarrow\left(x-2023\right).\left(\dfrac{1}{3}-\dfrac{1}{7}\right)=\dfrac{4}{21}\)
\(\Leftrightarrow x-2023=1\Leftrightarrow x=2024\)
Tìm x biết: (x – 2023)22 − ( x – 2023) = 0 Giúp mình với mình đang cần gấp
=>(x-2023)[(x-2023)^21-1]=0
=>x-2023=0 hoặc x-2023=1
=>x=2023 hoặc x=2024
Tìm X ; 3 . ( x - 2 ) +150 = 240
360 / ( x - 7 ) =90
(4 . x +5) / 3=121-11=3
3.(x-2)+150=240
=>3.(x-2)=90
=>x-2=30
=>x=32
360:(x-7)=90
=>x-7=4
=>x=11
Cau cuối mình không hiểu đề cho lắm
Tìm x ,biết:
(x-1)3_ (2/2023-7/247+1/8)=7/247-2/2023
\(\left(x-1\right)^3-\left(\dfrac{2}{2023}-\dfrac{7}{247}+\dfrac{1}{8}\right)=\dfrac{7}{247}-\dfrac{2}{2023}\)
\(\Rightarrow\left(x-1\right)^3-\dfrac{2}{2023}+\dfrac{7}{247}-\dfrac{1}{8}=\dfrac{7}{247}-\dfrac{2}{2023}\)
\(\Rightarrow\left(x-1\right)^3=\dfrac{7}{247}-\dfrac{7}{247}-\dfrac{2}{2023}+\dfrac{2}{2023}+\dfrac{1}{8}\)
\(\Rightarrow\left(x-1\right)^3=\dfrac{1}{8}\)
\(\Rightarrow\left(x-1\right)^3=\left(\dfrac{1}{2}\right)^3\)
\(\Rightarrow x-1=\dfrac{1}{2}\)
\(\Rightarrow x=\dfrac{1}{2}+1\)
\(\Rightarrow x=\dfrac{3}{2}\)
Lời gải:
$(x-1)^3=\frac{7}{247}-\frac{2}{2023}+\frac{2}{2023}-\frac{7}{247}+\frac{1}{8}=\frac{1}{8}$
$x-1=\frac{1}{2}$
$x=\frac{1}{2}+1=\frac{3}{2}$
a, cho x, y là 2 số thoả mãn (2x - y + 7)\(^{2022}\) + |x - 1|\(^{2023}\) ≤ 0. Tính giá trị của biểu thức: P = x\(^{2023}\) + (y - 10)\(^{2023}\)
b, Tìm số tự nhiên x, y biết 25 - y\(^2\) = 8(x = 2023)\(^2\)
c, Tìm giá trị nhỏ nhất của biểu thức: P = (|x - 3| + 2)\(^2\) + |y + 3| + 2019
d, Tìm cặp số nguyên x, y biết: (2 - x)(x + 1) = |y + 1|
a: \(\left(2x-y+7\right)^{2022}>=0\forall x,y\)
\(\left|x-1\right|^{2023}>=0\forall x\)
=>\(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}>=0\forall x,y\)
mà \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}< =0\forall x,y\)
nên \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}=0\)
=>\(\left\{{}\begin{matrix}2x-y+7=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2x+7=9\end{matrix}\right.\)
\(P=x^{2023}+\left(y-10\right)^{2023}\)
\(=1^{2023}+\left(9-10\right)^{2023}\)
=1-1
=0
c: \(\left|x-3\right|>=0\forall x\)
=>\(\left|x-3\right|+2>=2\forall x\)
=>\(\left(\left|x-3\right|+2\right)^2>=4\forall x\)
mà \(\left|y+3\right|>=0\forall y\)
nên \(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|>=4\forall x,y\)
=>\(P=\left(\left|x-3\right|+2\right)^2+\left|y-3\right|+2019>=4+2019=2023\forall x,y\)
Dấu '=' xảy ra khi x-3=0 và y-3=0
=>x=3 và y=3
Tìm x, biết :
x . ( x - 2023 ) = 0
`@` `\text {Ans}`
`\downarrow`
`x(x-2023) = 0`
`=>`
`TH1: x = 0`
`TH2: x - 2023 = 0`
`=> x = 0 + 2023`
`=> x = 2023`
Vậy, `x \in {0; 2023}.`
x.(x - 2023) = 0
⇒ x = 0 hoặc x - 2023 = 0
*) x - 2023 = 0
x = 0 + 2023
x = 2023
Vậy x = 0; x = 2023
BàiBài 1:
a) Tìm ƯCLN(279 ; 414 ; 504):
b) Tìm ƯCLN(27 ; 49 ; 125)
c)Tìm ƯC(84 ; 114)
Bài 2: Tìm x ∈ N biết
a) 126 chia hết cho x ; 144 chia hết cho x và x lớn nhất
b) 121 chia x dư 1 ; 183 chia x dư 3 và x lớn nhất
c) 240 chia hết cho x ; 384 chia hết cho x và x > 6
Bài 3:
1) Thực hiện phép tính
a) 78 0 12.5 + 3^2
b) 4^2 . 55 + 2 .45 . 8 - 1
c) 1800 : {49 - [ 2.(6^2 -34)^3 - 5^4 : 5^3]}
d) \(\dfrac{15.2^{11}.3^{10}-6^{11}}{12.6^{10}+7.4^6.9^6}\)
2. Tìm x biết
a) 45 - x = 22 + 9
b) 84 + (2x - 3) = 129
c) 27 : 32 + 41 = 2.52
d) 2 + 23 + 25 + ... + 22x + 1=682
2:
a: \(126⋮x;144⋮x\)
=>x thuộc ƯC(126;144)
mà x lớn nhất
nên x=UCLN(126;144)=18
b: 121 chia x dư 1
=>121-1 chia hết cho x
=>120 chia hết cho x(1)
183 chia x dư 3
=>183-3 chia hết cho 3
=>180 chia hết cho x(2)
Từ (1), (2) suy ra \(x\inƯC\left(120;180\right)\)
mà x lớn nhất
nên x=ƯCLN(120;180)=60
c: 240 và 384 đều chia hết cho x
=>\(x\inƯC\left(240;384\right)\)
=>\(x\inƯ\left(48\right)\)
mà x>6
nên \(x\in\left\{8;12;16;24;48\right\}\)
tìm x biết : x+...+2023+2024=2024
tìm x thuộc z biết x + (x+1) + (x+2) + ... + 2023 + 2024 = 2024
\(x+\left(x+1\right)+\left(x+2\right)+...+2023+2024=2024\)
\(\Rightarrow2023x+4090506=2024-2024-20232023\)
\(\Rightarrow x+4090506=-2023\)
\(\Rightarrow2023x=-2023-4090506\)
\(\Rightarrow2023x=-4092529\)
\(\Rightarrow x=-2023\).