tính sqrt(2-sqrt3) - sqrt(2+sqrt3)
Rút gọn \(\sqrt{8+2\sqrt15}-\sqrt{8-2\sqrt15}\)
\(\sqrt{(5+2\sqrt6)}+\sqrt{8-2\sqrt15}\)
\(\sqrt{4+2\sqrt3}+\sqrt{4-2\sqrt3}-\dfrac{5}{\sqrt3-2\sqrt2}-\dfrac{5}{\sqrt3+\sqrt8}\)
\(\sqrt{5+2\sqrt{6}}+\sqrt{8-2\sqrt{15}}=\sqrt{\left(\sqrt{3}\right)^2+2\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}=\sqrt{3}+\sqrt{2}+\sqrt{5}-\sqrt{3}=\sqrt{2}+\sqrt{5}\)
\(\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}-\dfrac{5}{\sqrt{3}-2\sqrt{2}}-\dfrac{5}{\sqrt{3}+\sqrt{8}}=\sqrt{\sqrt{3}^2+2\sqrt{3}.1+1^2}+\sqrt{\sqrt{3}^2-2\sqrt{3}.1+1^2}-\dfrac{5\left(\sqrt{3}+2\sqrt{2}\right)}{\left(\sqrt{3}-2\sqrt{2}\right)\left(\sqrt{3}+2\sqrt{2}\right)}-\dfrac{5\left(\sqrt{3}-2\sqrt{2}\right)}{\left(\sqrt{3}+2\sqrt{2}\right)\left(\sqrt{3}-2\sqrt{2}\right)}=\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}-\dfrac{5\sqrt{3}+10\sqrt{2}}{9-8}-\dfrac{5\sqrt{3}-10\sqrt{2}}{9-8}=\sqrt{3}+1+\sqrt{3}-1-5\sqrt{3}-10\sqrt{2}-5\sqrt{3}+10\sqrt{2}=-8\sqrt{3}\)\(\sqrt{8+2\sqrt{15}}-\sqrt{8-2\sqrt{15}}=\sqrt{\left(\sqrt{5}\right)^2+2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{5}\right)^2-2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^2}=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}=\sqrt{5}+\sqrt{3}-\sqrt{5}+\sqrt{3}=2\sqrt{3}\)
Rút gọn các biểu thức sau:
\(A =\sqrt(1-\sqrt3)^2- \sqrt(\sqrt3+2)^2\)
\(B = \sqrt(2-\sqrt3)^2 + \sqrt(4-2\sqrt3)\)
\(C= \sqrt(15-6\sqrt6) + \sqrt(33-12\sqrt6)\)
\(A=\sqrt{\left(1-\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{3}+2\right)^2}\)
\(=1-\sqrt{3}-\sqrt{3}-2\)
\(=-2\sqrt{3}-1\)
\(B=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(4-2\sqrt{3}\right)^2}\)
\(=2-\sqrt{3}+4-2\sqrt{3}\)
\(=6-3\sqrt{3}\)
\(A=\sqrt{\left(1-\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{3}+2\right)^2}\)
\(A=\sqrt{3}-1-\sqrt{3}-2\)
\(A=-3\)
\(B=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(4-2\sqrt{3}\right)}\)
\(B=2-\sqrt{3}+\sqrt{3}-1\)
\(B=1\)
\(A=\sqrt{\left(1-\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{3}+2\right)^2}\)
\(=\sqrt{3}-1-\sqrt{3}-2\)
\(=-3\)
\(B=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(4-2\sqrt{3}\right)}\)
\(=2-\sqrt{3}+\sqrt{3}-1\)
\(=1\)
\(\sqrt{(\sqrt3 - \sqrt5 )^2} - \sqrt{(1-\sqrt5)^2} +\dfrac{ 3 }{\sqrt3}\)
\(\sqrt{\left(\sqrt{3}-\sqrt{5}\right)^2}-\sqrt{\left(1-\sqrt{5}\right)^2}+\dfrac{3}{\sqrt{3}}\)
\(=\left|\sqrt{3}-\sqrt{5}\right|-\left|1-\sqrt{5}\right|+\dfrac{\left(\sqrt{3}\right)^2}{\sqrt{3}}\)
\(=\left(\sqrt{5}-\sqrt{3}\right)-\left(\sqrt{5}-1\right)+\sqrt{3}\)
\(=\sqrt{5}-\sqrt{3}-\sqrt{5}+1+\sqrt{3}\)
\(=1\)
Chứng minh :
\(\sqrt{2+\sqrt3}+\sqrt{2-\sqrt3}\)=\(\sqrt{6}\)
\(A=\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\)
\(\Rightarrow\)\(\sqrt{2}A=\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}\)
\(=\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=\sqrt{3}+1+\sqrt{3}-1\)
\(=2\sqrt{3}\)
\(\Rightarrow\)\(A=\sqrt{6}\) (đpcm)
\(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}=\sqrt{6}\)
\(VT=\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\)
\(=\sqrt{\frac{2\left(2+\sqrt{3}\right)}{2}}+\sqrt{\frac{2\left(2-\sqrt{3}\right)}{2}}\)
\(=\sqrt{\frac{4+2\sqrt{3}}{2}}+\sqrt{\frac{4-2\sqrt{3}}{2}}\)
\(=\sqrt{\frac{3+2\sqrt{3}+1}{2}}+\sqrt{\frac{3-2\sqrt{3}+1}{2}}\)
\(=\sqrt{\frac{\left(\sqrt{3}+\sqrt{1}\right)^2}{2}}+\sqrt{\frac{\left(\sqrt{3}-\sqrt{1}\right)^2}{2}}\)
\(=\frac{\left|\sqrt{3}+\sqrt{1}\right|+|\sqrt{3}-\sqrt{1}|}{\sqrt{2}}\)
\(=\frac{\sqrt{3}+\sqrt{1}+\sqrt{3}-\sqrt{1}}{\sqrt{2}}\)
\(=\frac{2\sqrt{3}}{\sqrt{2}}=\frac{\sqrt{12}}{\sqrt{2}}=\sqrt{6}\)
\(=VP\)
Vậy đẳng thức được chứng minh .
\(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}=\sqrt{6}\)
\(VT=\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\)
\(=\sqrt{\frac{2\left(2+\sqrt{3}\right)}{2}}+\sqrt{\frac{2\left(2-\sqrt{3}\right)}{2}}\)
\(=\sqrt{\frac{4+2\sqrt{3}}{2}}+\sqrt{\frac{4-2\sqrt{3}}{2}}\)
\(=\sqrt{\frac{3+2\sqrt{3}+1}{2}}+\sqrt{\frac{3-2\sqrt{3}+1}{2}}\)
\(=\sqrt{\frac{\left(\sqrt{3}+\sqrt{1}\right)^2}{2}}+\sqrt{\frac{\left(\sqrt{3}-\sqrt{1}\right)^2}{2}}\)
\(=\frac{\left|\sqrt{3}+\sqrt{1}\right|+|\sqrt{3}-\sqrt{1}|}{\sqrt{2}}\)
\(=\frac{\sqrt{3}+\sqrt{1}+\sqrt{3}-\sqrt{1}}{\sqrt{2}}\)
\(=\frac{2\sqrt{3}}{\sqrt{2}}=\frac{\sqrt{12}}{\sqrt{2}}=\sqrt{6}\)
\(=VP\)
Vậy đẳng thức được chứng minh .
1.thực hiện phép tính: \(\sqrt{4-2\sqrt3} \)-\(\dfrac{2}{\sqrt3+1}\)+\(\dfrac{\sqrt{3} -3}{\sqrt{3}-1}\)
2.cho biểu thức B=\(\dfrac{\sqrt{x}}{\sqrt{x}-3} \) + \(\dfrac{2\sqrt{x}-24}{x-9}\) với x ≥ 0, x≠9
a) rút gọn B
b) tìm giá trị của x để biểu thức B=5
Bài `1`
\(\sqrt{4-2\sqrt{3}}-\dfrac{2}{\sqrt{3}+1}+\dfrac{\sqrt{3}-3}{\sqrt{3}-1}\\ =\sqrt{3-2\sqrt{3}+1}-\dfrac{2\left(\sqrt{3}-1\right)}{3-1}-\dfrac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}\\ =\sqrt{\left(\sqrt{3}\right)^2-2\cdot\sqrt{3}\cdot1+1^2}-\dfrac{2\left(\sqrt{3}-1\right)}{2}-\sqrt{3}\\ =\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}+1-\sqrt{3}\\ =\sqrt{3}-1-\sqrt{3}+1-\sqrt{3}\\ =-\sqrt{3}\)
2:
a: \(B=\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{2\sqrt{x}-24}{x-9}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{2\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)+2\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{x+5\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{\left(\sqrt{x}+8\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\sqrt{x}+8}{\sqrt{x}+3}\)
b: B=5
=>\(5\left(\sqrt{x}+3\right)=\sqrt{x}+8\)
=>\(5\sqrt{x}+15=\sqrt{x}+8\)
=>\(4\sqrt{x}=-7\)(loại)
Vậy: \(x\in\varnothing\)
Rút gọn biểu thức:
A=\(\dfrac{4+\sqrt 2 -\sqrt 3 -\sqrt 6 +\sqrt 8}{2+\sqrt 2 -\sqrt 3}\)
B= 21(\(\sqrt{2+\sqrt3} +\sqrt{3-\sqrt5}\))\(^2\) - 6(\(\sqrt{2-\sqrt3}+ \sqrt{3+\sqrt5}\))\(^2\) - 15\(\sqrt{15}\)
Giúp em với ạ
Ta có: \(B=21\left(\sqrt{2+\sqrt{3}}+\sqrt{3-\sqrt{5}}\right)^2-6\left(\sqrt{2-\sqrt{3}}+\sqrt{3+\sqrt{5}}\right)^2-15\sqrt{15}\)
\(=21\cdot\left[2+\sqrt{3}+3-\sqrt{5}+2\sqrt{\left(2+\sqrt{3}\right)\left(3-\sqrt{5}\right)}\right]-6\cdot\left[2-\sqrt{3}+3+\sqrt{5}+2\cdot\sqrt{\left(2-\sqrt{3}\right)\left(3+\sqrt{5}\right)}\right]-15\sqrt{15}\)
\(=21\cdot\left(5+\sqrt{3}-\sqrt{5}+\sqrt{\left(4+2\sqrt{3}\right)\left(6-2\sqrt{5}\right)}\right)-6\cdot\left[5-\sqrt{3}+\sqrt{5}+\sqrt{\left(4-2\sqrt{3}\right)\left(6+2\sqrt{5}\right)}\right]-15\sqrt{15}\)
\(=21\cdot\left[5+\sqrt{3}-\sqrt{5}+\left(\sqrt{3}+1\right)\left(\sqrt{5}-1\right)\right]-6\cdot\left[5-\sqrt{3}+\sqrt{5}+\left(\sqrt{3}-1\right)\left(\sqrt{5}+1\right)\right]-15\sqrt{15}\)
\(=21\cdot\left(5+\sqrt{3}-\sqrt{5}+\sqrt{15}-\sqrt{3}+\sqrt{5}-1\right)-6\cdot\left(5-\sqrt{3}+\sqrt{5}+\sqrt{15}+\sqrt{3}-\sqrt{5}-1\right)-15\sqrt{15}\)
\(=21\cdot\left(4+\sqrt{15}\right)-6\left(4+\sqrt{15}\right)-15\sqrt{15}\)
\(=84+21\sqrt{15}-24-6\sqrt{15}-15\sqrt{15}\)
\(=60\)
\( {\sqrt3^2 - \sqrt{39^2} \over \sqrt7^2-\sqrt91^2}\)
Rút gọn các biểu thức sau:
a. $A = (\sqrt{12}-2\sqrt5)\sqrt3 + \sqrt{60}$.
b. $B = \dfrac{\sqrt{4x}}{x-3}.\sqrt{\dfrac{x^2-6x+9}x}$ với $0<x<3$.
a, \(A=\left(\sqrt{12}-2\sqrt{5}\right)\sqrt{3}+\sqrt{60}\)
\(=\left(2\sqrt{3}-2\sqrt{5}\right)\sqrt{3}+2\sqrt{15}\)
\(=2\sqrt{9}-2\sqrt{15}+2\sqrt{15}=2\sqrt{9}\)
b, \(B=\frac{\sqrt{4x}}{x-3}\sqrt{\frac{x^2-6x+9}{x}}=\frac{2\sqrt{x}}{x-3}.\sqrt{\frac{\left(x-3\right)^2}{x}}\)
\(=\frac{2\sqrt{x}}{x-3}.\frac{x-3}{\sqrt{x}}=2\)
em thiếu, giờ mới nhìn lại \(2\sqrt{9}=2.3=6\)
giải hộ mình bài này:
So sánh:
a.(2*sqrt 10)+(3*sqrt 3) và (3*sqrt 5)+(2*sqrt 7)
b.(sqrt2 +sqrt3) và 2
THANKS!
a: \(\left(2\sqrt{10}+3\sqrt{3}\right)^2=67+12\sqrt{30}\)
\(\left(3\sqrt{5}+2\sqrt{7}\right)^2=77+12\sqrt{35}\)
mà \(12\sqrt{30}< 12\sqrt{35};67< 77\)
nên \(2\sqrt{10}+3\sqrt{3}< 3\sqrt{5}+2\sqrt{7}\)
b: \(\left(\sqrt{2}+\sqrt{3}\right)^2=5+2\sqrt{6}\)
\(2^2=4\)
mà 5>4
nên \(\sqrt{2}+\sqrt{3}>2\)