Tính :\(A=c\text{os}^2a-tan60+cot45-2sin30+c\text{os}^2a.tan^2a\)
Thu gọn các biểu thức sau:
a. \(sin^6a+c\text{os}^6a+3sin^2a.c\text{os}^2a\)
b.\(sin^4a-c\text{os}^4a-\left(sina+c\text{os}a\right)\left(sina-c\text{os}a\right)\)
c.\(c\text{os}^2a+tan^2a.c\text{os}^2a\)
d.\(c\text{os}^2a+tan^2a.c\text{os}^2a\)
a) \(sin^6x+cos^6x+3sin^2x.cos^2x\)
\(=\left(sin^2x+cos^2x\right)\left(sin^4x-sin^2x.cox^2x+cos^4x\right)+3sin^2x.cos^2x\)
\(=sin^4x-sin^2x.cox^2x+cos^4x+3sin^2x.cos^2x\)
\(=sin^4x+2sin^2x.cox^2x+cos^4x=\left(sin^2x+cos^2x\right)^2=1\text{}\text{}\)
b) \(sin^4x-cos^4x-\left(sinx+cosx\right)\left(sinx-cosx\right)\)
\(=\left(sin^2x+cos^2x\right)\left(sin^2x-cos^2x\right)-\left(sin^2x-cos^2x\right)\)
\(=1\left(sin^2x-cos^2x\right)-\left(sin^2x-cos^2x\right)=0\)
c) \(cos^2x+tan^2x.cos^2x\)
\(=cos^2x+\dfrac{sin^2x}{cos^2x}.cos^2x=sin^2x+cos^2x=1\)
\(\frac{sin2a-c\text{os}2a}{sin2a-c\text{os}2a}=tan4a-\frac{1}{c\text{os}4a}\)
\(\frac{sin2a-cos2a}{sin2a+cos2a}=\frac{\left(sin2a-cos2a\right)^2}{\left(sin2a+cos2a\right)\left(sin2a-cos2a\right)}\)
\(=\frac{sin^22a+cos^22a-2sin2a.cos2a}{sin^22a-cos^22a}=\frac{1-sin4a}{-cos4a}\)
\(=-\frac{1}{cos4a}+\frac{sin4a}{cos4a}=tan4a-\frac{1}{cos4a}\)
Đề ko đúng kìa bạn, vế trái tử mẫu giống nhau (bằng 1 luôn còn gì)
\(sin^6a+c\text{os}^6a+3\text{s}in^2a.c\text{os}^2a=\)
Cho a là góc nhọn Rút gọn bt
\(A=sin^6a+c\text{os}^6s+3sin^2s+c\text{os}^2a\)
\(A=sin^6a+cos^6a+3\cdot sin^2a\cdot cos^2a\)
\(=\left(sin^2a+cos^2a\right)^3-3\cdot sin^2a\cdot cos^2a\cdot\left(sin^2a+cos^2a\right)+3\cdot sin^2a\cdot cos^2a\)
=1
\(c\text{os}^2a+2sin^22a\)
chứng minh rằng:
a)\(\frac{c\text{os}a.cot\text{a}-sin\text{a}.t\text{ana}}{\frac{1}{sin\text{a}}-\frac{1}{c\text{os}a}}=1+sin\text{a}.c\text{os}a\)
b)\(\frac{c\text{os}a+sin\text{a}-1}{c\text{os}a-sin\text{a}+1}=\frac{sin\text{a}}{1+c\text{os}a}\)
c)\(\frac{sin\text{a}}{1+c\text{os}a}+\frac{1+c\text{os}a}{sin\text{a}}=\frac{2}{sin\text{a}}\)
[(anpha): a;( * ): độ ;
1,Tính giá trị của biểu thức
a, A= 2sin30*- 2cos60*+tan45*
b, B = cot44*. cot45* . cot46*
c, C= cos60*/(1+sin60*) + 1/ tan30*
d, D=cos^2 15* + cos^2 25* + cos^2 35*+ cos^2 45* + cos^2 55*+ cos^2 65* +cos^2 75* - 3
e, Cho cos a = 1/3. Tính E=3sin^2a+cos^2a
1) \(c\text{os}x+c\text{os}2x+c\text{os}3x=0\)
2) \(c\text{os}3x+c\text{os}4x+c\text{os}5x=0\)
3) \(c\text{os^2}x+c\text{os^2}2x+c\text{os^2}3x=0\)
4) \(c\text{os^2}2x+c\text{os^2}3x+c\text{os^2}4x=0\)
1.
\(cosx+cos3x+cos2x=0\)
\(\Leftrightarrow2cos2x.cosx+cos2x=0\)
\(\Leftrightarrow cos2x\left(2cosx+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\cosx=-\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}+k\pi\\x=\pm\frac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+\frac{k\pi}{2}\\x=\pm\frac{\pi}{3}+k2\pi\end{matrix}\right.\)
2.
\(cos3x+cos5x+cos4x=0\)
\(\Leftrightarrow2cos4x.cosx+cos4x=0\)
\(\Leftrightarrow cos4x\left(2cosx+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos4x=0\\cosx=-\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x=\frac{\pi}{2}+k\pi\\x=\pm\frac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{8}+\frac{k\pi}{4}\\x=\pm\frac{\pi}{3}+k2\pi\end{matrix}\right.\)
3.
Ta có: \(\left\{{}\begin{matrix}cos^2x\ge0\\cos^22x\ge0\\cos^23x\ge0\end{matrix}\right.\) với mọi x
\(\Rightarrow cos^2x+cos^22x+cos^23x\ge0\) với mọi x
Dấu "=" xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}cosx=0\\cos2x=0\\cos3x=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}cosx=0\\2cos^2x-1=0\\cos3x=0\end{matrix}\right.\)
Pt vô nghiệm (do nghiệm của pt thứ nhất ko thể là nghiệm của pt thứ 2)
chứng minh rằng
a)
\(\frac{sin\text{a}}{1+c\text{os}a}+cot\text{a}=\frac{1}{sin\text{a}}\)
b)\(\frac{1}{c\text{os}a}-\frac{c\text{os}a}{1+sin\text{a}}=t\text{ana}\)
c) \(\frac{t\text{ana}-sin\text{a}}{sin^3a}=\frac{1}{c\text{os}a\left(1+c\text{os}a\right)}\)
d) \(\frac{sin\text{a}+c\text{os}a-1}{sin\text{a}-c\text{os}a+1}=\frac{c\text{os}a}{1+sin\text{a}}\)
Lời giải:
a)
\(\frac{\sin a}{1+\cos a}+\cot a=\frac{\sin a}{1+\cos a}+\frac{\cos a}{\sin a}=\frac{\sin ^2a+\cos^2a+\cos a}{\sin a(1+\cos a)}\)
\(=\frac{1+\cos a}{\sin a(1+\cos a)}=\frac{1}{\sin a}\) (đpcm)
b)
\(\frac{1}{\cos a}-\frac{\cos a}{1+\sin a}=\frac{1+\sin a-\cos ^2a}{\cos a(1+\sin a)}=\frac{(1-\cos ^2a)+\sin a}{\cos a(\sin a+1)}\)
\(=\frac{\sin^2a+\sin a}{\cos a(\sin a+1)}=\frac{\sin a(\sin a+1)}{\cos a(\sin a+1)}=\frac{\sin a}{\cos a}=\tan a\) (đpcm)
c)
\(\frac{\tan a-\sin a}{\sin ^3a}=\frac{\frac{\sin a}{\cos a}-\sin a}{\sin ^3a}=\frac{\frac{1}{\cos a}-1}{\sin ^2a}=\frac{1-\cos a}{\cos a\sin ^2a}=\frac{1-\cos a}{\cos a(1-\cos ^2a)}=\frac{1}{\cos a(1+\cos a)}\)
d)
\(\frac{\sin a+\cos a-1}{\sin a-\cos a+1}=\frac{(\sin a+\cos a-1)(\sin a+\cos a+1)}{(\sin a-\cos a+1)(\sin a+\cos a+1)}=\frac{(\sin a+\cos a)^2-1}{(\sin a+1)^2-\cos ^2a}\)
\(=\frac{\sin ^2a+\cos ^2a+2\sin a\cos a-1}{\sin ^2a+1+2\sin a-\cos ^2a}=\frac{1+2\sin a\cos a-1}{\sin ^2a+1+2\sin a-(1-\sin ^2a)}\)
\(=\frac{2\sin a\cos a}{2\sin ^2a+2\sin a}=\frac{2\sin a\cos a}{2\sin a(\sin a+1)}=\frac{\cos a}{1+\sin a}\) (đpcm)
Mấu chốt trong các bài này là việc sử dụng công thức $\sin ^2a+\cos ^2a=1$
Lời giải:
a)
\(\frac{\sin a}{1+\cos a}+\cot a=\frac{\sin a}{1+\cos a}+\frac{\cos a}{\sin a}=\frac{\sin ^2a+\cos^2a+\cos a}{\sin a(1+\cos a)}\)
\(=\frac{1+\cos a}{\sin a(1+\cos a)}=\frac{1}{\sin a}\) (đpcm)
b)
\(\frac{1}{\cos a}-\frac{\cos a}{1+\sin a}=\frac{1+\sin a-\cos ^2a}{\cos a(1+\sin a)}=\frac{(1-\cos ^2a)+\sin a}{\cos a(\sin a+1)}\)
\(=\frac{\sin^2a+\sin a}{\cos a(\sin a+1)}=\frac{\sin a(\sin a+1)}{\cos a(\sin a+1)}=\frac{\sin a}{\cos a}=\tan a\) (đpcm)
c)
\(\frac{\tan a-\sin a}{\sin ^3a}=\frac{\frac{\sin a}{\cos a}-\sin a}{\sin ^3a}=\frac{\frac{1}{\cos a}-1}{\sin ^2a}=\frac{1-\cos a}{\cos a\sin ^2a}=\frac{1-\cos a}{\cos a(1-\cos ^2a)}=\frac{1}{\cos a(1+\cos a)}\)
d)
\(\frac{\sin a+\cos a-1}{\sin a-\cos a+1}=\frac{(\sin a+\cos a-1)(\sin a+\cos a+1)}{(\sin a-\cos a+1)(\sin a+\cos a+1)}=\frac{(\sin a+\cos a)^2-1}{(\sin a+1)^2-\cos ^2a}\)
\(=\frac{\sin ^2a+\cos ^2a+2\sin a\cos a-1}{\sin ^2a+1+2\sin a-\cos ^2a}=\frac{1+2\sin a\cos a-1}{\sin ^2a+1+2\sin a-(1-\sin ^2a)}\)
\(=\frac{2\sin a\cos a}{2\sin ^2a+2\sin a}=\frac{2\sin a\cos a}{2\sin a(\sin a+1)}=\frac{\cos a}{1+\sin a}\) (đpcm)