3x-1 +3x +3x+1 = 39
tìm x:
3x-1 + 3x + 3x+1 = 39
giúp mik với ;-;
\(3^{x-1}+3^x+3^{x+1}=39\)
\(3^{x-1}+3^{x-1}.3+9.3^{x-1}=39\)
\(13.3^{x-1}=39\)
\(3^{x-1}=39:13=3\)
\(x-1=1\)
\(x=2\)
Sửa đề: 3ˣ⁻¹ + 3ˣ + 3ˣ⁺¹ = 39
3ˣ⁻¹ + 3ˣ + 3ˣ⁺¹ = 39
3ˣ⁻¹.(1 + 3 + 3²) = 39
3ˣ⁻¹ . 13 = 39
3ˣ⁻¹ = 39 : 13
3ˣ⁻¹ = 3
x - 1 = 1
x = 1 + 1
x = 2
Giúp mình con tính này với:
3x-1 + 3x + 3x+1 = 39 Bài tìm x nha
\(\Leftrightarrow3^{x-1}\left(1+3+3^2\right)=39\\ \Leftrightarrow3^{x-1}\cdot13=39\\ \Leftrightarrow3^{x-1}=3=3^1\\ \Leftrightarrow x-1=1\Leftrightarrow x=2\)
\(\Leftrightarrow3^x\cdot\dfrac{13}{3}=39\)
\(\Leftrightarrow x=2\)
\(3^{x-1}+3^x+3^{x+1}=39\\ \Rightarrow3^x:3+3^x+3^x.3=39\\ \Rightarrow3^x.\dfrac{1}{3}+3^x+3^x.3=39\\ \Rightarrow3^x\left(\dfrac{1}{3}+1+3\right)=39\\ \Rightarrow3^x.\dfrac{13}{3}=39\\ \Rightarrow3^x=9\\ \Rightarrow3^x=3^2\\ \Rightarrow x=2\)
Chứng minh rằng : 3x+1 + 3x+2 +3x+3 +...+3x+11+ 3x+12 chia hết cho 39 ,x là số tự nhiên
\(=3^{x+1}\left(1+3+3^2\right)+...+3^{x+10}\left(1+3+3^2\right)=\)
\(=3^x.3.13+...+3^{x+9}.3.13=\)
\(39\left(3^x+...+3^{x+9}\right)⋮39\)
giải phương trình sau
1/ ( x-3) ^2 =16
2/ (3x-1)^3 =8
3/ (x-11)^3 =-27
4/ x^3 -3x^2 +3x-1'
1/ ( x-3) 2=16
\(\Rightarrow\left[{}\begin{matrix}x-3=4\\x-3=-4\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=7\\x=-1\end{matrix}\right.\)
2/ (3x-1)3=8
\(\Rightarrow3x-1=2\\ \Rightarrow3x=3\\ \Rightarrow x=1\)
3/ (x-11)3=-27
\(\Rightarrow x-11=-3\\ \Rightarrow x=8\)
phần 4 mình ko rõ đề
4) \(x^3-3x^2+3x-1=-64\)
\(\Rightarrow x^3-3x^2+3x+63=0\\ \Rightarrow\left(x^3+3x^2\right)-\left(6x^2+18x\right)+\left(21x+63\right)=0\\ \Rightarrow x^2\left(x+3\right)+6x\left(x+3\right)+21\left(x+3\right)=0\\ \Rightarrow\left(x+3\right)\left(x^2+6x+21\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+3=0\\x^2+6x+21=0\end{matrix}\right.\)
\(x+3=0\\ \Rightarrow x=-3\)
\(x^2+6x+21=0\\ \Rightarrow\left(x^2+6x+9\right)+12=0\\ \Rightarrow\left(x+3\right)^2+12=0\)
Vì \(\left(x+3\right)^2\ge0;12>0\Rightarrow\left(x+3\right)^2+12>0\Rightarrow x^2+6x+21vônghiệm\)
Vậy \(x=-3\)
Câu 28: Tính đạo hàm của hàm số y = 3x+1
A. y' = 3x+1ln3 B. y' = (1 + x) . 3x
C. y' = \(\dfrac{3^{x+1}}{ln3}\) D. Y' = \(\dfrac{3^{X+1}.ln3}{1+x}\)
Ta có:
\(y'=\left(3^{x+1}\right)'\)
\(=3^{x+1}ln3\)
\(\Rightarrow A\)
-Chúc bạn học tốt-
cho hàm số y=\(\dfrac{sin^3x+cos^3x}{2-sin2x}\) chừng minh rằng 2(y'\(^2\)+y"\(^2\))=1
\(D=R\backslash\left\{0\right\}\)
\(\sin^3x+\cos^3x=\left(\sin x+\cos x\right)\left(\sin^2x-\sin x\cos x+\cos^2x\right)=\left(\sin x+\cos x\right)\left(1-\sin x\cos x\right)\)
\(2-\sin2x=2-2\sin x\cos x=2\left(1-\sin x\cos x\right)\)
\(\Rightarrow y=\dfrac{\left(\sin x+\cos x\right)\left(1-\sin x\cos x\right)}{2\left(1-\sin x\cos x\right)}=\dfrac{\sin x+\cos x}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}y'=\dfrac{2\cos x-2\sin x}{4}=\dfrac{1}{2}\left(\cos x-\sin x\right)\Rightarrow y'^2=\dfrac{1}{4}\left(\cos^2x-2\sin x\cos x+\sin^2x\right)=\dfrac{1}{4}\left(1-2\sin x\cos x\right)\\y''=-\dfrac{1}{2}.\sin x-\dfrac{1}{2}\cos x\Rightarrow y''^2=\left[-\dfrac{1}{2}\left(\sin x+\cos x\right)\right]^2=\dfrac{1}{4}\left(1+2\sin x\cos x\right)\end{matrix}\right.\)
\(\Rightarrow2\left(y'^2+y''^2\right)=2\left[\dfrac{1}{4}\left(1-\sin2x\right)+\dfrac{1}{4}\left(1+\sin2x\right)\right]=1\)
}
a.(3x-1)3 - (3x+1)3
b.(1+3x)3 - (1-3x)3
c.(1+3x)3 - (1-3x).(1+3x)-(1-3x)3
`a, (3x-1)^3-(3x+1)^3`
`= (3x-1-3x-1)(9x^2-6x+1+9x^2-1+9x^2+6x+1`
`= (-2)(27x^2 +1)`
`= -54x^2-2`.
`b, (1+3x)^3 - (1-3x)^3`
`= 1+ 9x + 27x^2 + 27x^3 - 1 + 9x - 27x^2 + 27x^3`
`= 54x^3 + 18x`.
`c, = 54x^3 + 18x -1 +9x^2`.
a: =27x^3-27x^2+9x-1-27x^3-27x^2-9x-1
=-54x^2-2
b: =27x^3+27x^2+9x+1-27x^3+27x^2-9x+1
=54x^2+2
c: =54x^2+2+(3x-1)(3x+1)
=54x^2+2+9x^2-1
=63x^2+1
giải phương trình (x-1)^3+(2x-3)^3+(3x-5)^3-3.(x-1)(2x-3)(3x-5)=0
Các bn ơi mình cần ngay trong 15' nx help me
*Gọi a=x-1, b=2x-3, c=3x-5.
-Phương trình trở thành:
a3+b3+c3-3abc=0 ⇔(a+b)3+c3-3ab(a+b)-3abc=0
⇔(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)=0
⇔(a+b+c)(a2+2ab+b2-ac-bc+c2-3ab)=0
⇔(a+b+c)(a2+b2+c2-ab-ac-bc)=0
⇔a+b+c=0 hay a2+b2+c2-ab-ac-bc=0
*a+b+c=0 ⇔x-1+2x-3+3x-5=0 ⇔6x-9=0 ⇔x=\(\dfrac{3}{2}\)
*a2+b2+c2-ab-ac-bc=0
Vì a2+b2+c2-ab-ac-bc≥0 và dấu bằng xảy ra khi và chỉ khi a=b=c nên
=>x-1=2x-3 ⇔x=2
=>x-1=3x-5 ⇔x=2
=>2x-3=3x-5⇔ x=2